結果

問題 No.2703 FizzBuzz Letter Counting
ユーザー ecotteaecottea
提出日時 2024-03-30 18:31:12
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 26,623 bytes
コンパイル時間 8,573 ms
コンパイル使用メモリ 350,776 KB
実行使用メモリ 10,624 KB
最終ジャッジ日時 2024-09-30 17:39:45
合計ジャッジ時間 13,635 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 17 ms
5,248 KB
testcase_03 TLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
testcase_59 -- -
testcase_60 -- -
testcase_61 -- -
testcase_62 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【上から状態桁 DP,未満フラグ,前 0 フラグ,スコア和】O(n b m)(の改変)
/*
* b 進数で n 桁の数 num 以下の非負の整数で,桁の数字に 0 を含まず,
* 数字和が m の倍数であるものの和を返す.
*/
mint TLE(int M, vi v, vl l, int m = 3, int b = 10) {
	string num;
	rep(j, M) rep(hoge, l[j]) num += '0' + v[j];
	dump("num:", num);

	int n = sz(num);

	// dp[i][f][j] : 以下の条件を満たす数の和:
	//	i : 上からの桁 d[0..i) まで決まっている.
	//	f : d[0..i) < num[0..i) なら 1,さもなくば 0(未満フラグ)
	//      d[0..i) の全てが '0' なら 2,さもなくば 0(前 0 フラグ)
	//      f はこれら 2 つのフラグの OR をとったもの
	//	j : d[0..i) の数字和 (mod m)
	vvvm dp(n + 1, vvm(1LL << 2, vm(m)));
	vvvm cnt(n + 1, vvm(1LL << 2, vm(m)));
	cnt[0][0 | 2][0] = 1;

	mint res = -8;

	// 上の桁から順に配る DP
	rep(i, n) {
		// x : num の上から i 桁目の数
		int x = num[i] - '0';

		repb(f, 2) {
			int smaller = f & 1;
			int leading0 = (f >> 1) & 1;

			// d_max : d[i] のとれる値の最大値
			int d_max = (smaller ? b - 1 : x);

			rep(j, m) {
				// d : d[i]
				repi(d, 0, d_max) {
					int n_smaller = (int)(smaller || (d < d_max));
					int n_leading0 = (int)(leading0 && (d == 0));
					int nf = n_smaller | (n_leading0 << 1);

					int nj = (j + d) % m;

					cnt[i + 1][nf][nj] += cnt[i][f][j];
					if (!n_leading0) dp[i + 1][nf][nj] += dp[i][f][j] + cnt[i][f][j];

					if (i == n - 1) {
						// 5 の倍数
						if (d % 5 == 0) {
							res += cnt[i][f][j] * 4;
						}
						// 3 の倍数
						if (nj == 0) {
							res += cnt[i][f][j] * 4;
						}
						// どちらでもない
						if (d % 5 != 0 && nj != 0) {
							res += dp[i][f][j] + cnt[i][f][j];
						}
					}
				}
			}
		}

		dump(i + 1, ":");
		rep(f, 4) {
			dump("(lz, smaller) =", bitset<2>(f));
			dump("dp :", dp[i + 1][f]);
			dump("cnt:", cnt[i + 1][f]);
		}
	}

	return res;
}


void umekomi() {
	int m = 3, b = 10;

	vvvm mats(10, vvm(2 * 4 * 3, vm(2 * 4 * 3)));

	rep(dig, 10) {
		string num;
		num += '0' + dig;
		int n = sz(num);

		rep(tp, 2) rep(F, 4) rep(J, 3) {
			// dp[i][f][j] : 以下の条件を満たす数の和:
			//	i : 上からの桁 d[0..i) まで決まっている.
			//	f : d[0..i) < num[0..i) なら 1,さもなくば 0(未満フラグ)
			//      d[0..i) の全てが '0' なら 2,さもなくば 0(前 0 フラグ)
			//      f はこれら 2 つのフラグの OR をとったもの
			//	j : d[0..i) の数字和 (mod m)
			vvvm dp(n + 1, vvm(1LL << 2, vm(m)));
			vvvm cnt(n + 1, vvm(1LL << 2, vm(m)));
			if (tp == 0) dp[0][F][J] = 1;
			else cnt[0][F][J] = 1;

			// 上の桁から順に配る DP
			rep(i, n) {
				// x : num の上から i 桁目の数
				int x = num[i] - '0';

				repb(f, 2) {
					int smaller = f & 1;
					int leading0 = (f >> 1) & 1;

					// d_max : d[i] のとれる値の最大値
					int d_max = (smaller ? b - 1 : x);

					rep(j, m) {
						// d : d[i]
						repi(d, 0, d_max) {
							int n_smaller = (int)(smaller || (d < d_max));
							int n_leading0 = (int)(leading0 && (d == 0));
							int nf = n_smaller | (n_leading0 << 1);

							int nj = (j + d) % m;

							cnt[i + 1][nf][nj] += cnt[i][f][j];
							if (!n_leading0) dp[i + 1][nf][nj] += dp[i][f][j] + cnt[i][f][j];
						}
					}
				}
			}

			rep(f, 4) rep(j, 3) mats[dig][tp * 12 + F * 3 + J][0 * 12 + f * 3 + j] = dp[1][f][j];
			rep(f, 4) rep(j, 3) mats[dig][tp * 12 + F * 3 + J][1 * 12 + f * 3 + j] = cnt[1][f][j];
		}
	}

	cout << "mint mats[10][24][24] = {";
	rep(d, 10) {
		cout << "{";
		rep(i, 24) {
			cout << "{";
			rep(j, 24) {
				cout << mats[d][i][j];

				if (j < 23) cout << ",";
			}
			cout << "}\n";
			
			if (i < 23) cout << ",";
		}
		cout << "}\n";

		if (d < 9) cout << ",";
	}
	cout << "};\n";

	exit(0);
}


mint mats[10][24][24] = { {{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0}
,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0}
,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0}
,{1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0}
,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0}
,{1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0}
,{1,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0}
,{0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0}
,{1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0}
,{0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0,0}
,{0,1,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0}
,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{1,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0}
,{0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0}
,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,1,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,1,1,0,0,0,0,0,0,0,1,0,2,1,1,0,0,0,0,0,0}
,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,1,1,2,1,0,0,0,0,0,0}
,{1,0,0,1,1,2,0,0,0,0,0,0,1,0,0,1,1,2,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,1,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,0}
,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0}
,{1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,1,2,2,1,0,0,0,0,0,0}
,{1,0,0,1,2,2,0,0,0,0,0,0,1,0,0,1,2,2,0,0,0,0,0,0}
,{0,1,0,2,1,2,0,0,0,0,0,0,0,1,0,2,1,2,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,1,1,2,1,0,0,0,1,0,0}
,{1,0,0,1,1,2,0,0,0,0,0,0,1,0,0,1,1,2,0,0,0,0,1,0}
,{0,1,0,2,1,1,0,0,0,0,0,0,0,1,0,2,1,1,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{1,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,2,2,0,0,0,0,0,0,1,0,0,2,2,2,0,0,0,0,0,0}
,{0,1,0,2,2,2,0,0,0,0,0,0,0,1,0,2,2,2,0,0,0,0,0,0}
,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,1,2,2,2,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{1,0,0,1,2,2,0,0,0,0,0,0,1,0,0,1,2,2,0,0,0,1,0,0}
,{0,1,0,2,1,2,0,0,0,0,0,0,0,1,0,2,1,2,0,0,0,0,1,0}
,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,1,2,2,1,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,1,0,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,3,2,2,0,0,0,0,0,0,0,1,0,3,2,2,0,0,0,0,0,0}
,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,1,2,3,2,0,0,0,0,0,0}
,{1,0,0,2,2,3,0,0,0,0,0,0,1,0,0,2,2,3,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,1,0,2,2,2,0,0,0,0,0,0,0,1,0,2,2,2,0,0,0,1,0,0}
,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,1,2,2,2,0,0,0,0,1,0}
,{1,0,0,2,2,2,0,0,0,0,0,0,1,0,0,2,2,2,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{0,0,1,3,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,1,3,3,2,0,0,0,0,0,0}
,{1,0,0,2,3,3,0,0,0,0,0,0,1,0,0,2,3,3,0,0,0,0,0,0}
,{0,1,0,3,2,3,0,0,0,0,0,0,0,1,0,3,2,3,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,1,2,3,2,0,0,0,1,0,0}
,{1,0,0,2,2,3,0,0,0,0,0,0,1,0,0,2,2,3,0,0,0,0,1,0}
,{0,1,0,3,2,2,0,0,0,0,0,0,0,1,0,3,2,2,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
,{{1,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,2,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,1,0,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
,{1,0,0,3,3,3,0,0,0,0,0,0,1,0,0,3,3,3,0,0,0,0,0,0}
,{0,1,0,3,3,3,0,0,0,0,0,0,0,1,0,3,3,3,0,0,0,0,0,0}
,{0,0,1,3,3,3,0,0,0,0,0,0,0,0,1,3,3,3,0,0,0,0,0,0}
,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0}
,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0}
,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0}
,{1,0,0,2,3,3,0,0,0,0,0,0,1,0,0,2,3,3,0,0,0,1,0,0}
,{0,1,0,3,2,3,0,0,0,0,0,0,0,1,0,3,2,3,0,0,0,0,1,0}
,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,1,3,3,2,0,0,0,0,0,1}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0}
,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1}
}
};


//【正方行列(固定サイズ)】
/*
* Fixed_matrix<T, n>() : O(n^2)
*	T の要素を成分にもつ n×n 零行列で初期化する.
*
* Fixed_matrix<T, n>(bool identity = true) : O(n^2)
*	T の要素を成分にもつ n×n 単位行列で初期化する.
*
* Fixed_matrix<T, n>(vvT a) : O(n^2)
*	二次元配列 a[0..n)[0..n) の要素で初期化する.
*
* A + B : O(n^2)
*	n×n 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n^2)
*	n×n 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n^2)
*	n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n^2)
*	n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す.
*
* x * A : O(n^2)
*	n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す.
*
* A * B : O(n^3)
*	n×n 行列 A と n×n 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
*	自身を d 乗した行列を返す.
*/
template <class T, int n>
struct Fixed_matrix {
	array<array<T, n>, n> v; // 行列の成分

	// n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する.
	Fixed_matrix(bool identity = false) {
		rep(i, n) v[i].fill(T(0));
		if (identity) rep(i, n) v[i][i] = T(1);
	}

	// 二次元配列 a[0..n)[0..n) の要素で初期化する.
	Fixed_matrix(const vector<vector<T>>& a) {
		// verify : https://yukicoder.me/problems/no/1000

		Assert(sz(a) == n && sz(a[0]) == n);
		rep(i, n) rep(j, n) v[i][j] = a[i][j];
	}

	// 代入
	Fixed_matrix(const Fixed_matrix&) = default;
	Fixed_matrix& operator=(const Fixed_matrix&) = default;

	// アクセス
	inline array<T, n> const& operator[](int i) const { return v[i]; }
	inline array<T, n>& operator[](int i) { return v[i]; }

	// 入力
	friend istream& operator>>(istream& is, Fixed_matrix& a) {
		rep(i, n) rep(j, n) is >> a[i][j];
		return is;
	}

	// 比較
	bool operator==(const Fixed_matrix& b) const { return v == b.v; }
	bool operator!=(const Fixed_matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Fixed_matrix& operator+=(const Fixed_matrix& b) {
		rep(i, n) rep(j, n) v[i][j] += b[i][j];
		return *this;
	}
	Fixed_matrix& operator-=(const Fixed_matrix& b) {
		rep(i, n) rep(j, n) v[i][j] -= b[i][j];
		return *this;
	}
	Fixed_matrix& operator*=(const T& c) {
		rep(i, n) rep(j, n) v[i][j] *= c;
		return *this;
	}
	Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; }
	Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; }
	Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; }
	friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; }
	Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(n^2)
	array<T, n> operator*(const array<T, n>& x) const {
		array<T, n> y{ 0 };
		rep(i, n) rep(j, n)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(n^2)
	friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) {
		array<T, n> y{ 0 };
		rep(i, n) rep(j, n) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Fixed_matrix operator*(const Fixed_matrix& b) const {
		// verify : https://yukicoder.me/problems/no/1000

		Fixed_matrix res;
		rep(i, n) rep(j, n) rep(k, n) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Fixed_matrix pow(ll d) const {
		Fixed_matrix res(true), pow2(*this);
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d /= 2;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Fixed_matrix& a) {
		rep(i, n) {
			os << "[";
			rep(j, n) os << a[i][j] << " ]"[j == n - 1];
			if (i < n - 1) os << "\n";
		}
		return os;
	}
#endif
};


mint TLE2(int M, vi v, vl l) {
	array<mint, 24> vec;
	rep(i, 24) vec[i] = 0;
	vec[1 * 12 + (0 | 2) * 3 + 0] = 1;

	rep(t, M) {
		Fixed_matrix<mint, 24> mat;
		rep(i, 24) rep(j, 24) mat[i][j] = mats[v[t]][i][j];

		if (t < M - 1) mat = mat.pow(l[t]);
		else  mat = mat.pow(l[t] - 1);

		vec = vec * mat;
	}

	mint res = -8;

	// x : num の上から i 桁目の数
	int x = v[M - 1];

	repb(f, 2) {
		int smaller = f & 1;
		int leading0 = (f >> 1) & 1;

		// d_max : d[i] のとれる値の最大値
		int d_max = (smaller ? 10 - 1 : x);

		rep(j, 3) {
			// d : d[i]
			repi(d, 0, d_max) {
				int n_smaller = (int)(smaller || (d < d_max));
				int n_leading0 = (int)(leading0 && (d == 0));
				int nf = n_smaller | (n_leading0 << 1);

				int nj = (j + d) % 3;

				// 5 の倍数
				if (d % 5 == 0) {
					res += vec[1 * 12 + f * 3 + j] * 4;
				}
				// 3 の倍数
				if (nj == 0) {
					res += vec[1 * 12 + f * 3 + j] * 4;
				}
				// どちらでもない
				if (d % 5 != 0 && nj != 0) {
					res += vec[0 * 12 + f * 3 + j] + vec[1 * 12 + f * 3 + j];
				}
			}
		}
	}

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

//	umekomi();

	int m;
	cin >> m;

	vi v(m); vl l(m);
	rep(j, m) cin >> v[j] >> l[j];

//	dump(TLE(m, v, l)); dump("-----");

	cout << TLE2(m, v, l) << endl;
}
0