結果
問題 | No.2703 FizzBuzz Letter Counting |
ユーザー | ecottea |
提出日時 | 2024-03-30 18:31:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 26,623 bytes |
コンパイル時間 | 8,573 ms |
コンパイル使用メモリ | 350,776 KB |
実行使用メモリ | 10,624 KB |
最終ジャッジ日時 | 2024-09-30 17:39:45 |
合計ジャッジ時間 | 13,635 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,624 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 17 ms
5,248 KB |
testcase_03 | TLE | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
testcase_53 | -- | - |
testcase_54 | -- | - |
testcase_55 | -- | - |
testcase_56 | -- | - |
testcase_57 | -- | - |
testcase_58 | -- | - |
testcase_59 | -- | - |
testcase_60 | -- | - |
testcase_61 | -- | - |
testcase_62 | -- | - |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【上から状態桁 DP,未満フラグ,前 0 フラグ,スコア和】O(n b m)(の改変) /* * b 進数で n 桁の数 num 以下の非負の整数で,桁の数字に 0 を含まず, * 数字和が m の倍数であるものの和を返す. */ mint TLE(int M, vi v, vl l, int m = 3, int b = 10) { string num; rep(j, M) rep(hoge, l[j]) num += '0' + v[j]; dump("num:", num); int n = sz(num); // dp[i][f][j] : 以下の条件を満たす数の和: // i : 上からの桁 d[0..i) まで決まっている. // f : d[0..i) < num[0..i) なら 1,さもなくば 0(未満フラグ) // d[0..i) の全てが '0' なら 2,さもなくば 0(前 0 フラグ) // f はこれら 2 つのフラグの OR をとったもの // j : d[0..i) の数字和 (mod m) vvvm dp(n + 1, vvm(1LL << 2, vm(m))); vvvm cnt(n + 1, vvm(1LL << 2, vm(m))); cnt[0][0 | 2][0] = 1; mint res = -8; // 上の桁から順に配る DP rep(i, n) { // x : num の上から i 桁目の数 int x = num[i] - '0'; repb(f, 2) { int smaller = f & 1; int leading0 = (f >> 1) & 1; // d_max : d[i] のとれる値の最大値 int d_max = (smaller ? b - 1 : x); rep(j, m) { // d : d[i] repi(d, 0, d_max) { int n_smaller = (int)(smaller || (d < d_max)); int n_leading0 = (int)(leading0 && (d == 0)); int nf = n_smaller | (n_leading0 << 1); int nj = (j + d) % m; cnt[i + 1][nf][nj] += cnt[i][f][j]; if (!n_leading0) dp[i + 1][nf][nj] += dp[i][f][j] + cnt[i][f][j]; if (i == n - 1) { // 5 の倍数 if (d % 5 == 0) { res += cnt[i][f][j] * 4; } // 3 の倍数 if (nj == 0) { res += cnt[i][f][j] * 4; } // どちらでもない if (d % 5 != 0 && nj != 0) { res += dp[i][f][j] + cnt[i][f][j]; } } } } } dump(i + 1, ":"); rep(f, 4) { dump("(lz, smaller) =", bitset<2>(f)); dump("dp :", dp[i + 1][f]); dump("cnt:", cnt[i + 1][f]); } } return res; } void umekomi() { int m = 3, b = 10; vvvm mats(10, vvm(2 * 4 * 3, vm(2 * 4 * 3))); rep(dig, 10) { string num; num += '0' + dig; int n = sz(num); rep(tp, 2) rep(F, 4) rep(J, 3) { // dp[i][f][j] : 以下の条件を満たす数の和: // i : 上からの桁 d[0..i) まで決まっている. // f : d[0..i) < num[0..i) なら 1,さもなくば 0(未満フラグ) // d[0..i) の全てが '0' なら 2,さもなくば 0(前 0 フラグ) // f はこれら 2 つのフラグの OR をとったもの // j : d[0..i) の数字和 (mod m) vvvm dp(n + 1, vvm(1LL << 2, vm(m))); vvvm cnt(n + 1, vvm(1LL << 2, vm(m))); if (tp == 0) dp[0][F][J] = 1; else cnt[0][F][J] = 1; // 上の桁から順に配る DP rep(i, n) { // x : num の上から i 桁目の数 int x = num[i] - '0'; repb(f, 2) { int smaller = f & 1; int leading0 = (f >> 1) & 1; // d_max : d[i] のとれる値の最大値 int d_max = (smaller ? b - 1 : x); rep(j, m) { // d : d[i] repi(d, 0, d_max) { int n_smaller = (int)(smaller || (d < d_max)); int n_leading0 = (int)(leading0 && (d == 0)); int nf = n_smaller | (n_leading0 << 1); int nj = (j + d) % m; cnt[i + 1][nf][nj] += cnt[i][f][j]; if (!n_leading0) dp[i + 1][nf][nj] += dp[i][f][j] + cnt[i][f][j]; } } } } rep(f, 4) rep(j, 3) mats[dig][tp * 12 + F * 3 + J][0 * 12 + f * 3 + j] = dp[1][f][j]; rep(f, 4) rep(j, 3) mats[dig][tp * 12 + F * 3 + J][1 * 12 + f * 3 + j] = cnt[1][f][j]; } } cout << "mint mats[10][24][24] = {"; rep(d, 10) { cout << "{"; rep(i, 24) { cout << "{"; rep(j, 24) { cout << mats[d][i][j]; if (j < 23) cout << ","; } cout << "}\n"; if (i < 23) cout << ","; } cout << "}\n"; if (d < 9) cout << ","; } cout << "};\n"; exit(0); } mint mats[10][24][24] = { {{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0} ,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0} ,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0} ,{1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0} ,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0} ,{1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0} ,{1,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0} ,{0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0} ,{1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0} ,{0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0,0} ,{0,1,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0} ,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{1,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0} ,{0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0} ,{0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,1,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,1,1,0,0,0,0,0,0,0,1,0,2,1,1,0,0,0,0,0,0} ,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,1,1,2,1,0,0,0,0,0,0} ,{1,0,0,1,1,2,0,0,0,0,0,0,1,0,0,1,1,2,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,1,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,0} ,{0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0} ,{1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,1,2,2,1,0,0,0,0,0,0} ,{1,0,0,1,2,2,0,0,0,0,0,0,1,0,0,1,2,2,0,0,0,0,0,0} ,{0,1,0,2,1,2,0,0,0,0,0,0,0,1,0,2,1,2,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,0,1,1,2,1,0,0,0,0,0,0,0,0,1,1,2,1,0,0,0,1,0,0} ,{1,0,0,1,1,2,0,0,0,0,0,0,1,0,0,1,1,2,0,0,0,0,1,0} ,{0,1,0,2,1,1,0,0,0,0,0,0,0,1,0,2,1,1,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{1,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,2,2,0,0,0,0,0,0,1,0,0,2,2,2,0,0,0,0,0,0} ,{0,1,0,2,2,2,0,0,0,0,0,0,0,1,0,2,2,2,0,0,0,0,0,0} ,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,1,2,2,2,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{1,0,0,1,2,2,0,0,0,0,0,0,1,0,0,1,2,2,0,0,0,1,0,0} ,{0,1,0,2,1,2,0,0,0,0,0,0,0,1,0,2,1,2,0,0,0,0,1,0} ,{0,0,1,2,2,1,0,0,0,0,0,0,0,0,1,2,2,1,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,1,0,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,3,2,2,0,0,0,0,0,0,0,1,0,3,2,2,0,0,0,0,0,0} ,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,1,2,3,2,0,0,0,0,0,0} ,{1,0,0,2,2,3,0,0,0,0,0,0,1,0,0,2,2,3,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,1,0,2,2,2,0,0,0,0,0,0,0,1,0,2,2,2,0,0,0,1,0,0} ,{0,0,1,2,2,2,0,0,0,0,0,0,0,0,1,2,2,2,0,0,0,0,1,0} ,{1,0,0,2,2,2,0,0,0,0,0,0,1,0,0,2,2,2,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{0,0,1,3,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,1,3,3,2,0,0,0,0,0,0} ,{1,0,0,2,3,3,0,0,0,0,0,0,1,0,0,2,3,3,0,0,0,0,0,0} ,{0,1,0,3,2,3,0,0,0,0,0,0,0,1,0,3,2,3,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{0,0,1,2,3,2,0,0,0,0,0,0,0,0,1,2,3,2,0,0,0,1,0,0} ,{1,0,0,2,2,3,0,0,0,0,0,0,1,0,0,2,2,3,0,0,0,0,1,0} ,{0,1,0,3,2,2,0,0,0,0,0,0,0,1,0,3,2,2,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } ,{{1,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,2,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,1,0,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} ,{1,0,0,3,3,3,0,0,0,0,0,0,1,0,0,3,3,3,0,0,0,0,0,0} ,{0,1,0,3,3,3,0,0,0,0,0,0,0,1,0,3,3,3,0,0,0,0,0,0} ,{0,0,1,3,3,3,0,0,0,0,0,0,0,0,1,3,3,3,0,0,0,0,0,0} ,{0,0,0,4,3,3,0,0,0,0,0,0,0,0,0,4,3,3,0,0,0,0,0,0} ,{0,0,0,3,4,3,0,0,0,0,0,0,0,0,0,3,4,3,0,0,0,0,0,0} ,{0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0} ,{1,0,0,2,3,3,0,0,0,0,0,0,1,0,0,2,3,3,0,0,0,1,0,0} ,{0,1,0,3,2,3,0,0,0,0,0,0,0,1,0,3,2,3,0,0,0,0,1,0} ,{0,0,1,3,3,2,0,0,0,0,0,0,0,0,1,3,3,2,0,0,0,0,0,1} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,1,0,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,1,0} ,{0,0,0,3,3,3,0,0,0,0,0,0,0,0,0,3,3,3,0,0,0,0,0,1} } }; //【正方行列(固定サイズ)】 /* * Fixed_matrix<T, n>() : O(n^2) * T の要素を成分にもつ n×n 零行列で初期化する. * * Fixed_matrix<T, n>(bool identity = true) : O(n^2) * T の要素を成分にもつ n×n 単位行列で初期化する. * * Fixed_matrix<T, n>(vvT a) : O(n^2) * 二次元配列 a[0..n)[0..n) の要素で初期化する. * * A + B : O(n^2) * n×n 行列 A, B の和を返す.+= も使用可. * * A - B : O(n^2) * n×n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n^2) * n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n^2) * n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す. * * x * A : O(n^2) * n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す. * * A * B : O(n^3) * n×n 行列 A と n×n 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T, int n> struct Fixed_matrix { array<array<T, n>, n> v; // 行列の成分 // n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する. Fixed_matrix(bool identity = false) { rep(i, n) v[i].fill(T(0)); if (identity) rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..n) の要素で初期化する. Fixed_matrix(const vector<vector<T>>& a) { // verify : https://yukicoder.me/problems/no/1000 Assert(sz(a) == n && sz(a[0]) == n); rep(i, n) rep(j, n) v[i][j] = a[i][j]; } // 代入 Fixed_matrix(const Fixed_matrix&) = default; Fixed_matrix& operator=(const Fixed_matrix&) = default; // アクセス inline array<T, n> const& operator[](int i) const { return v[i]; } inline array<T, n>& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Fixed_matrix& a) { rep(i, n) rep(j, n) is >> a[i][j]; return is; } // 比較 bool operator==(const Fixed_matrix& b) const { return v == b.v; } bool operator!=(const Fixed_matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Fixed_matrix& operator+=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] += b[i][j]; return *this; } Fixed_matrix& operator-=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] -= b[i][j]; return *this; } Fixed_matrix& operator*=(const T& c) { rep(i, n) rep(j, n) v[i][j] *= c; return *this; } Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; } Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; } Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; } friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; } Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); } // 行列ベクトル積 : O(n^2) array<T, n> operator*(const array<T, n>& x) const { array<T, n> y{ 0 }; rep(i, n) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(n^2) friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) { array<T, n> y{ 0 }; rep(i, n) rep(j, n) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Fixed_matrix operator*(const Fixed_matrix& b) const { // verify : https://yukicoder.me/problems/no/1000 Fixed_matrix res; rep(i, n) rep(j, n) rep(k, n) res[i][j] += v[i][k] * b[k][j]; return res; } Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Fixed_matrix pow(ll d) const { Fixed_matrix res(true), pow2(*this); while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Fixed_matrix& a) { rep(i, n) { os << "["; rep(j, n) os << a[i][j] << " ]"[j == n - 1]; if (i < n - 1) os << "\n"; } return os; } #endif }; mint TLE2(int M, vi v, vl l) { array<mint, 24> vec; rep(i, 24) vec[i] = 0; vec[1 * 12 + (0 | 2) * 3 + 0] = 1; rep(t, M) { Fixed_matrix<mint, 24> mat; rep(i, 24) rep(j, 24) mat[i][j] = mats[v[t]][i][j]; if (t < M - 1) mat = mat.pow(l[t]); else mat = mat.pow(l[t] - 1); vec = vec * mat; } mint res = -8; // x : num の上から i 桁目の数 int x = v[M - 1]; repb(f, 2) { int smaller = f & 1; int leading0 = (f >> 1) & 1; // d_max : d[i] のとれる値の最大値 int d_max = (smaller ? 10 - 1 : x); rep(j, 3) { // d : d[i] repi(d, 0, d_max) { int n_smaller = (int)(smaller || (d < d_max)); int n_leading0 = (int)(leading0 && (d == 0)); int nf = n_smaller | (n_leading0 << 1); int nj = (j + d) % 3; // 5 の倍数 if (d % 5 == 0) { res += vec[1 * 12 + f * 3 + j] * 4; } // 3 の倍数 if (nj == 0) { res += vec[1 * 12 + f * 3 + j] * 4; } // どちらでもない if (d % 5 != 0 && nj != 0) { res += vec[0 * 12 + f * 3 + j] + vec[1 * 12 + f * 3 + j]; } } } } return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); // umekomi(); int m; cin >> m; vi v(m); vl l(m); rep(j, m) cin >> v[j] >> l[j]; // dump(TLE(m, v, l)); dump("-----"); cout << TLE2(m, v, l) << endl; }