結果
| 問題 | No.376 立方体のN等分 (2) | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2016-06-07 14:28:22 | 
| 言語 | Java (openjdk 23) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 4,871 bytes | 
| コンパイル時間 | 2,974 ms | 
| コンパイル使用メモリ | 85,892 KB | 
| 実行使用メモリ | 43,916 KB | 
| 最終ジャッジ日時 | 2024-10-08 17:17:00 | 
| 合計ジャッジ時間 | 11,091 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 35 WA * 3 | 
ソースコード
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        String line = null;
        while (cin.hasNext()) {
            line = cin.nextLine();
        }
        cin.close();
        divided(Long.parseLong(line));
    }
    private static void divided(long n) {
        long maxSlice = n - 1;
        long minSlice = n - 1;
        /* nが素数か判定する */
        boolean isPrime = new BigInteger(String.valueOf(n)).isProbablePrime(8);
        if (isPrime) {
            minSlice = n - 1;
        } else {
            double thirdRoot = Math.cbrt(n);
            if (thirdRoot == (long) thirdRoot) {
                /* たまたまNが整数の3乗だった場合は、(thirdRoot-1)*3が答え */
                minSlice = ((long) thirdRoot - 1) * 3;
            } else {
                /* 3乗根が整数にならないのであれば、それより小さい値から順に割っていき、3乗根以下でもっとも大きい約数を求める */
                long divisorUnderThirdRoot = n;
                for (long i = (long) thirdRoot; i > 1; i--) {
                    if (n % i == 0) {
                        divisorUnderThirdRoot = i;
                        long rest = n / divisorUnderThirdRoot;
                        /* 割った残りの値が素数かを判定する */
                        boolean isPrimeOfRest = new BigInteger(String.valueOf(rest)).isProbablePrime(8);
                        if (isPrimeOfRest) {
                            /* 残りの数が素数なのであれば、約数側がさらに2数の積にならないかを確認する */
                            boolean isPrimeOfDivisor = new BigInteger(String.valueOf(divisorUnderThirdRoot)).isProbablePrime(8);
                            if (isPrimeOfDivisor) {
                                /* Nが素数×素数の形になってしまった場合、それ以上の分割は無理 */
                                minSlice = (divisorUnderThirdRoot - 1) + (rest - 1);
                                break;
                            } else {
                                /* 約数側をさらに2数の積で分割する。約数の平方根をとる */
                                double rootOfDivisor = Math.sqrt(divisorUnderThirdRoot);
                                if (rootOfDivisor == (long) rootOfDivisor) {
                                    /* 平方根が整数だった場合は、(root-1)*2に(rest-1)を足したものが答え */
                                    minSlice = ((long) rootOfDivisor - 1) * 2 + (rest - 1);
                                    break;
                                } else {
                                    long divisorOverRoot = divisorUnderThirdRoot;
                                    for (long j = (long) rootOfDivisor; j > 1; j--) {
                                        if (divisorUnderThirdRoot % j == 0) {
                                            divisorOverRoot = j;
                                            break;
                                        }
                                    }
                                    long result = divisorUnderThirdRoot / divisorOverRoot;
                                    minSlice = (rest - 1) + (divisorOverRoot - 1) + (result - 1);
                                    break;
                                }
                            }
                        } else {
                            /* 残った数が素数でないなら、そちらをさらに2数の積の形にする。 */
                            double rootOfRest = Math.sqrt(rest);
                            long tempMinSlice;
                            if (rootOfRest == (long) rootOfRest) {
                                tempMinSlice = ((long) rootOfRest - 1) * 2 + (divisorUnderThirdRoot - 1);
                            } else {
                                long divisorOfRoot = rest;
                                for (long j = (long) rootOfRest; j > 1; j--) {
                                    if (rest % j == 0) {
                                        divisorOfRoot = j;
                                        break;
                                    }
                                }
                                long result = rest / divisorOfRoot;
                                tempMinSlice = (divisorOfRoot - 1) + (result - 1) + (divisorUnderThirdRoot - 1);
                            }
                            if (tempMinSlice < minSlice) {
                                minSlice = tempMinSlice;
                            }
                        }
                    }
                }
            }
        }
        System.out.println(minSlice + " " + maxSlice);
    }
}
            
            
            
        