結果
| 問題 |
No.1234 典型RMQ
|
| コンテスト | |
| ユーザー |
convexineq
|
| 提出日時 | 2024-04-01 18:35:47 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 396 ms / 2,000 ms |
| コード長 | 7,304 bytes |
| コンパイル時間 | 168 ms |
| コンパイル使用メモリ | 82,216 KB |
| 実行使用メモリ | 95,544 KB |
| 最終ジャッジ日時 | 2024-09-30 21:57:08 |
| 合計ジャッジ時間 | 10,310 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
class LazySegmentTree:
#seg = LazySegmentTree(op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None):
def __init__(self, op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None):
# それぞれ Xの演算, 単位元, f(x), f\circ g, Xの恒等変換
# M が X に作用する
#__slots__ = ["op_X", "e_X", "mapping","compose","id_M","N","log","N0","data","lazy"]
self.e_X = e_X; self.op_X = op_X; self.mapping = mapping; self.compose = composision_of_Aut_X; self.id_M = id_of_Aut_X
self.N = N
self.log = (N-1).bit_length()
self.N0 = 1<<self.log
self.data = [e_X]*(2*self.N0)
self.lazy = [self.id_M]*self.N0
if array is not None:
assert N == len(array)
self.data[self.N0:self.N0+self.N] = array
for i in range(self.N0-1,0,-1): self.update(i)
# 1点更新
def point_set(self, p, x):
p += self.N0
for i in range(self.log, 0,-1):
self.push(p>>i)
self.data[p] = x
for i in range(1, self.log + 1):
self.update(p>>i)
# 1点取得
def point_get(self, p):
p += self.N0
for i in range(self.log, 0, -1):
self.push(p>>i)
return self.data[p]
# 半開区間[L,R)をopでまとめる
def prod(self, l, r):
if l == r: return self.e_X
l += self.N0
r += self.N0
for i in range(self.log, 0, -1):
if (l>>i)<<i != l:
self.push(l>>i)
if (r>>i)<<i != r:
self.push(r>>i)
sml = smr = self.e_X
while l < r:
if l & 1:
sml = self.op_X(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op_X(self.data[r], smr)
l >>= 1
r >>= 1
return self.op_X(sml, smr)
# 全体をopでまとめる
def all_prod(self): return self.data[1]
# 1点作用
def apply_point(self, p, f):
p += self.N0
for i in range(self.log, 0, -1):
self.push(p>>i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
self.update(p>>i)
# 区間作用
def apply(self, l, r, f):
if l == r: return
l += self.N0
r += self.N0
"""
for i in range(self.log, 0, -1):
if (l>>i)<<i != l:
self.push(l>>i)
if (r>>i)<<i != r:
self.push((r-1)>>i)
"""
l2, r2 = l, r
while l < r:
if l & 1:
self.all_apply(l, f)
l += 1
if r & 1:
r -= 1
self.all_apply(r, f)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if (l>>i)<<i != l:
self.update_with_lazy(l>>i)
if (r>>i)<<i != r:
self.update_with_lazy((r-1)>>i)
"""
始点 l を固定
f(x_l*...*x_{r-1}) が True になる最大の r
つまり TTTTFFFF となるとき、F となる最小の添え字
存在しない場合 n が返る
f(e_M) = True でないと壊れる
"""
def max_right(self, l, g):
if l == self.N: return self.N
l += self.N0
for i in range(self.log, 0, -1): self.push(l>>i)
sm = self.e_X
while True:
while l&1 == 0:
l >>= 1
if not g(self.op_X(sm, self.data[l])):
while l < self.N0:
self.push(l)
l *= 2
if g(self.op_X(sm, self.data[l])):
sm = self.op_X(sm, self.data[l])
l += 1
return l - self.N0
sm = self.op_X(sm, self.data[l])
l += 1
if l&-l == l: break
return self.N
"""
終点 r を固定
f(x_l*...*x_{r-1}) が True になる最小の l
つまり FFFFTTTT となるとき、T となる最小の添え字
存在しない場合 r が返る
f(e_M) = True でないと壊れる
"""
def min_left(self, r, g):
if r == 0: return 0
r += self.N0
for i in range(self.log, 0, -1): self.push((r-1)>>i)
sm = self.e_X
while True:
r -= 1
while r>1 and r&1:
r >>= 1
if not g(self.op_X(self.data[r], sm)):
while r < self.N0:
self.push(r)
r = 2*r + 1
if g(self.op_X(self.data[r], sm)):
sm = self.op_X(self.data[r], sm)
r -= 1
return r + 1 - self.N0
sm = self.op_X(self.data[r], sm)
if r&-r == r: break
return 0
# 以下内部関数
def update(self, k):
self.data[k] = self.op_X(self.data[2*k], self.data[2*k+1])
def update_with_lazy(self, k):
self.data[k] = self.mapping(self.lazy[k], self.op_X(self.data[2*k], self.data[2*k+1]))
def all_apply(self, k, f):
self.data[k] = self.mapping(f, self.data[k])
if k < self.N0:
self.lazy[k] = self.compose(f, self.lazy[k])
def push(self, k): #propagate と同じ
if self.lazy[k] is self.id_M: return
self.data[2*k ] = self.mapping(self.lazy[k], self.data[2*k])
self.data[2*k+1] = self.mapping(self.lazy[k], self.data[2*k+1])
if 2*k < self.N0:
self.lazy[2*k] = self.compose(self.lazy[k], self.lazy[2*k])
self.lazy[2*k+1] = self.compose(self.lazy[k], self.lazy[2*k+1])
self.lazy[k] = self.id_M
###################################################################
#
###################################################################
def make_binarytree_string(lst):
def find(i):
i += 1; k = 0
while i%2==0:
i //= 2; k += 1
return (1<<logN-k-1) + i//2
def substitute_big_to_INF(x):
if type(x) is int and x >= 10**9:
return "INF"
else:
return str(x)
N = len(lst)
logN = N.bit_length()-1
assert 1<<logN == N
arranged = [find(i) for i in range(N-1)]
#tabstring = [" "*len(str(lst[i]))+"\t" for i in arranged]
spacestring = [" "*len(substitute_big_to_INF(lst[i])) for i in arranged]
res = []
for i in range(logN):
base = 1<<i
skip = 1<<(logN-i)
start = skip//2 - 1
r = spacestring[:]
for j,v in enumerate(lst[base:base*2]):
r[start + j*skip] = substitute_big_to_INF(v)
res.append("".join(r))
return res
class RangeAddRangeMin(LazySegmentTree):
def __init__(self,N,MAX,array=None):
from operator import add
super().__init__(min, MAX, add, add, 0, N, array)
import sys
readline = sys.stdin.readline
n, = map(int, readline().split())
*a, = map(int, readline().split())
q, = map(int, readline().split())
seg = RangeAddRangeMin(n,1<<60,a)
for _ in range(q):
k,l,r,c = map(int, readline().split())
if k==1:
seg.apply(l-1,r,c)
else:
print(seg.prod(l-1,r))
convexineq