結果

問題 No.3110 WIP Editorial
ユーザー torisasami4torisasami4
提出日時 2024-04-02 01:14:09
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 11,771 bytes
コンパイル時間 10,520 ms
コンパイル使用メモリ 218,600 KB
実行使用メモリ 13,632 KB
最終ジャッジ日時 2024-09-30 23:00:00
合計ジャッジ時間 7,974 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 TLE -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
// #pragma GCC optimize("O2,unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

struct Union_Find_Tree {
    vector<int> data;
    const int n;
    int cnt;

    Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}

    int root(int x) {
        if (data[x] < 0) return x;
        return data[x] = root(data[x]);
    }

    int operator[](int i) { return root(i); }

    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        // if (data[x] > data[y]) swap(x, y);
        data[x] += data[y], data[y] = x;
        cnt--;
        return true;
    }

    int size(int x) { return -data[root(x)]; }

    int count() { return cnt; };

    bool same(int x, int y) { return root(x) == root(y); }

    void clear() {
        cnt = n;
        fill(begin(data), end(data), -1);
    }
};

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T>
T modinv(T a, const T &m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

// ----- library -------
template <typename Acted_Monoid>
struct Lazy_Segment_Tree {
    using Monoid = typename Acted_Monoid::Monoid;
    using Operator = typename Acted_Monoid::Operator;
    using M = typename Monoid::V;
    using O = typename Operator::V;
    int n, m, height;
    vector<M> seg;
    vector<O> lazy;

    // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
    // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p
    // g(f(a,b),p) = f(g(a,p),g(b,p))
    // g(g(a,p),q) = g(a,h(p,q))

    Lazy_Segment_Tree(const vector<M> &v) : n(v.size()) {
        m = 1, height = 0;
        while (m < n) m <<= 1, height++;
        seg.assign(2 * m, Monoid::id), lazy.assign(2 * m, Operator::id);
        copy(begin(v), end(v), begin(seg) + m);
        build();
    }

    Lazy_Segment_Tree(int n, M x = Monoid::id) : Lazy_Segment_Tree(vector<M>(n, x)) {}

    void set(int i, const M &x) { seg[m + i] = x; }

    void build() {
        for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
    }

    inline M reflect(int i) const { return Acted_Monoid::merge(seg[i], lazy[i]); }

    inline void recalc(int i) {
        while (i >>= 1) seg[i] = Monoid::merge(reflect(2 * i), reflect(2 * i + 1));
    }

    inline void eval(int i) {
        lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
        lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
        seg[i] = reflect(i);
        lazy[i] = Operator::id;
    }

    inline void thrust(int i) {
        for (int j = height; j > 0; j--) eval(i >> j);
    }

    void update(int l, int r, const O &x) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return;
        l += m, r += m;
        thrust(l), thrust(r - 1);
        int a = l, b = r;
        while (l < r) {
            if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
            if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
            l >>= 1, r >>= 1;
        }
        recalc(a), recalc(b - 1);
    }

    M query(int l, int r) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return Monoid::id;
        l += m, r += m;
        thrust(l), thrust(r - 1);
        M L = Monoid::id, R = Monoid::id;
        while (l < r) {
            if (l & 1) L = Monoid::merge(L, reflect(l++));
            if (r & 1) R = Monoid::merge(reflect(--r), R);
            l >>= 1, r >>= 1;
        }
        return Monoid::merge(L, R);
    }

    M operator[](int i) { return query(i, i + 1); }

    template <typename C>
    int find_subtree(int i, const C &check, M &x, int type) {
        while (i < m) {
            eval(i);
            M nxt = type ? Monoid::merge(reflect(2 * i + type), x) : Monoid::merge(x, reflect(2 * i + type));
            if (check(nxt)) {
                i = 2 * i + type;
            } else {
                x = nxt;
                i = 2 * i + (type ^ 1);
            }
        }
        return i - m;
    }

    // check(区間 [l,r] での演算結果) を満たす最小の r (なければ n)
    template <typename C>
    int find_first(int l, const C &check) {
        M L = Monoid::id;
        int a = l + m, b = 2 * m;
        thrust(a);
        while (a < b) {
            if (a & 1) {
                M nxt = Monoid::merge(L, reflect(a));
                if (check(nxt)) return find_subtree(a, check, L, 0);
                L = nxt;
                a++;
            }
            a >>= 1, b >>= 1;
        }
        return n;
    }

    // check(区間 [l,r) での演算結果) を満たす最大の l (なければ -1)
    template <typename C>
    int find_last(int r, const C &check) {
        M R = Monoid::id;
        int a = m, b = r + m;
        thrust(b - 1);
        while (a < b) {
            if ((b & 1) || a == 1) {
                M nxt = Monoid::merge(reflect(--b), R);
                if (check(nxt)) return find_subtree(b, check, R, 1);
                R = nxt;
            }
            a >>= 1, b >>= 1;
        }
        return -1;
    }
};

struct Monoid_1 {
    using V = int;
    static V merge(V a, V b) {
        int val = a + b;
        return val >= MOD ? val - MOD : val;
    }
    static const V id;
};

constexpr Monoid_1::V Monoid_1::id = 0;

struct Func_1 {
    int base, add;
    Func_1(int base, int add) : base(base), add(add) {}
    constexpr Func_1() : base(-1), add(0) {}
};

struct Operator_1 {
    using V = Func_1;
    static V merge(V a, V b) {
        if (b.base != -1)
            return b;
        int val = a.add + b.add;
        return Func_1(a.base, val >= MOD ? val - MOD : val);
    }
    static const V id;
};

constexpr Operator_1::V Operator_1::id = Func_1();

struct Acted_Monoid_1 {
    using Monoid = Monoid_1;
    using Operator = Operator_1;
    using M = typename Monoid::V;
    using O = typename Operator::V;
    static M merge(M a, O b) {
        int val = (b.base == -1 ? a : b.base) + b.add;
        return val >= MOD ? val - MOD : val;
    }
};
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, q;
    cin >> n >> q;
    vector<int> ps;
    rep2(i, 2, 100) {
        bool f = true;
        for (int j = 2; j * j <= i; j++) {
            if (i % j == 0)
                f = false;
        }
        if (f)
            ps.eb(i);
    }
    int m = sz(ps);
    vector<ll> a(n);
    rep(i, n) cin >> a[i];
    vector<vector<int>> pa(m, vector<int>(n, 0));
    rep(i, n) rep(j, m) while (a[i] % ps[j] == 0) a[i] /= ps[j], pa[j][i]++;
    vector<Lazy_Segment_Tree<Acted_Monoid_1>> seg;
    rep(i, m) seg.eb(pa[i]);
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            ll l, r, x;
            cin >> l >> r >> x;
            l--;
            rep(i, m) {
                int c = 0;
                while (x % ps[i] == 0)
                    x /= ps[i], c++;
                seg[i].update(l, r, Func_1(c, 0));
            }
        }
        if (type == 2) {
            ll l, r, x;
            cin >> l >> r >> x;
            l--;
            rep(i, m) {
                int c = 0;
                while (x % ps[i] == 0)
                    x /= ps[i], c++;
                seg[i].update(l, r, Func_1(-1, c));
            }
        }
        if (type == 3) {
            ll l, r, x;
            cin >> l >> r >> x;
            l--;
            mint ans = 1;
            rep(i, m) {
                if (ps[i] > x)
                    continue;
                ans *= seg[i].query(l, r) + 1;
            }
            cout << ans << '\n';
        }
    }
}
0