結果
| 問題 |
No.8112 区間和係数多項式?
|
| コンテスト | |
| ユーザー |
torisasami4
|
| 提出日時 | 2024-04-02 02:04:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,434 ms / 6,000 ms |
| コード長 | 12,475 bytes |
| コンパイル時間 | 2,476 ms |
| コンパイル使用メモリ | 203,316 KB |
| 最終ジャッジ日時 | 2025-02-20 19:32:11 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 29 |
ソースコード
// #define _GLIBCXX_DEBUG
// #pragma GCC optimize("O2,unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
// if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T>
T modinv(T a, const T &m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;
// ----- library -------
template <typename T>
struct Binary_Indexed_Tree {
vector<T> bit;
const int n;
Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
bit.resize(n + 1);
copy(begin(v), end(v), begin(bit) + 1);
for (int a = 2; a <= n; a <<= 1) {
for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
}
}
Binary_Indexed_Tree(int n, const T &x) : Binary_Indexed_Tree(vector<T>(n, x)) {}
void add(int i, const T &x) {
for (i++; i <= n; i += (i & -i)) bit[i] += x;
}
void change(int i, const T &x) { add(i, x - query(i, i + 1)); }
T sum(int i) const {
i = min(i, n);
if (i <= 0) return 0;
T ret = 0;
for (; i > 0; i -= (i & -i)) ret += bit[i];
return ret;
}
T query(int l, int r) const {
l = max(l, 0), r = min(r, n);
if (l >= r) return 0;
return sum(r) - sum(l);
}
T operator[](int i) const { return query(i, i + 1); }
};
struct Runtime_Mod_Int1 {
int x;
Runtime_Mod_Int1() : x(0) {}
Runtime_Mod_Int1(long long y) {
x = y % get_mod();
if (x < 0) x += get_mod();
}
static inline int &get_mod() {
static int mod = INT_MAX;
return mod;
}
static void set_mod(int mod) { get_mod() = mod; }
Runtime_Mod_Int1 &operator+=(const Runtime_Mod_Int1 &p) {
if ((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int1 &operator-=(const Runtime_Mod_Int1 &p) {
if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int1 &operator*=(const Runtime_Mod_Int1 &p) {
x = (int)(1LL * x * p.x % get_mod());
return *this;
}
Runtime_Mod_Int1 &operator/=(const Runtime_Mod_Int1 &p) {
*this *= p.inverse();
return *this;
}
Runtime_Mod_Int1 &operator++() { return *this += Runtime_Mod_Int1(1); }
Runtime_Mod_Int1 operator++(int) {
Runtime_Mod_Int1 tmp = *this;
++*this;
return tmp;
}
Runtime_Mod_Int1 &operator--() { return *this -= Runtime_Mod_Int1(1); }
Runtime_Mod_Int1 operator--(int) {
Runtime_Mod_Int1 tmp = *this;
--*this;
return tmp;
}
Runtime_Mod_Int1 operator-() const { return Runtime_Mod_Int1(-x); }
Runtime_Mod_Int1 operator+(const Runtime_Mod_Int1 &p) const { return Runtime_Mod_Int1(*this) += p; }
Runtime_Mod_Int1 operator-(const Runtime_Mod_Int1 &p) const { return Runtime_Mod_Int1(*this) -= p; }
Runtime_Mod_Int1 operator*(const Runtime_Mod_Int1 &p) const { return Runtime_Mod_Int1(*this) *= p; }
Runtime_Mod_Int1 operator/(const Runtime_Mod_Int1 &p) const { return Runtime_Mod_Int1(*this) /= p; }
bool operator==(const Runtime_Mod_Int1 &p) const { return x == p.x; }
bool operator!=(const Runtime_Mod_Int1 &p) const { return x != p.x; }
Runtime_Mod_Int1 inverse() const {
assert(*this != Runtime_Mod_Int1(0));
return pow(get_mod() - 2);
}
Runtime_Mod_Int1 pow(long long k) const {
Runtime_Mod_Int1 now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Runtime_Mod_Int1 &p) { return os << p.x; }
friend istream &operator>>(istream &is, Runtime_Mod_Int1 &p) {
long long a;
is >> a;
p = Runtime_Mod_Int1(a);
return is;
}
};
struct Runtime_Mod_Int2 {
int x;
Runtime_Mod_Int2() : x(0) {}
Runtime_Mod_Int2(long long y) {
x = y % get_mod();
if (x < 0) x += get_mod();
}
static inline int &get_mod() {
static int mod = INT_MAX;
return mod;
}
static void set_mod(int mod) { get_mod() = mod; }
Runtime_Mod_Int2 &operator+=(const Runtime_Mod_Int2 &p) {
if ((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int2 &operator-=(const Runtime_Mod_Int2 &p) {
if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int2 &operator*=(const Runtime_Mod_Int2 &p) {
x = (int)(1LL * x * p.x % get_mod());
return *this;
}
Runtime_Mod_Int2 &operator/=(const Runtime_Mod_Int2 &p) {
*this *= p.inverse();
return *this;
}
Runtime_Mod_Int2 &operator++() { return *this += Runtime_Mod_Int2(1); }
Runtime_Mod_Int2 operator++(int) {
Runtime_Mod_Int2 tmp = *this;
++*this;
return tmp;
}
Runtime_Mod_Int2 &operator--() { return *this -= Runtime_Mod_Int2(1); }
Runtime_Mod_Int2 operator--(int) {
Runtime_Mod_Int2 tmp = *this;
--*this;
return tmp;
}
Runtime_Mod_Int2 operator-() const { return Runtime_Mod_Int2(-x); }
Runtime_Mod_Int2 operator+(const Runtime_Mod_Int2 &p) const { return Runtime_Mod_Int2(*this) += p; }
Runtime_Mod_Int2 operator-(const Runtime_Mod_Int2 &p) const { return Runtime_Mod_Int2(*this) -= p; }
Runtime_Mod_Int2 operator*(const Runtime_Mod_Int2 &p) const { return Runtime_Mod_Int2(*this) *= p; }
Runtime_Mod_Int2 operator/(const Runtime_Mod_Int2 &p) const { return Runtime_Mod_Int2(*this) /= p; }
bool operator==(const Runtime_Mod_Int2 &p) const { return x == p.x; }
bool operator!=(const Runtime_Mod_Int2 &p) const { return x != p.x; }
Runtime_Mod_Int2 inverse() const {
assert(*this != Runtime_Mod_Int2(0));
return pow(get_mod() - 2);
}
Runtime_Mod_Int2 pow(long long k) const {
Runtime_Mod_Int2 now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Runtime_Mod_Int2 &p) { return os << p.x; }
friend istream &operator>>(istream &is, Runtime_Mod_Int2 &p) {
long long a;
is >> a;
p = Runtime_Mod_Int2(a);
return is;
}
};
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, b, q;
cin >> n >> b >> q;
using modb = Runtime_Mod_Int1;
modb::set_mod(b);
vector<int> c(5), d(5);
rep(k, 5) cin >> c[k] >> d[k];
vector<modb> a(n);
a[0] = c[0];
rep(k, n - 1) a[k + 1] = a[k] * d[0];
using modn = Runtime_Mod_Int2;
modn::set_mod(n);
vector<modn> i(q), j(q);
vector<modb> x(q), y(q);
i[0] = c[1];
j[0] = c[2];
x[0] = c[3];
y[0] = c[4];
rep(k, q - 1) {
i[k + 1] = i[k] * d[1];
j[k + 1] = j[k] * d[2];
x[k + 1] = x[k] * d[3];
y[k + 1] = y[k] * d[4];
}
Binary_Indexed_Tree<modb> bit(a);
vector<int> p(n);
rep2(k, 1, n) p[k] = k - (k & (-k));
rep(k, q) {
bit.add(i[k].x, x[k] - a[i[k].x]);
a[i[k].x] = x[k];
modb ans = 0, po = 1;
while (1) {
if (j[k] == 0) {
ans += a[0] * po;
break;
}
ans += bit.query(p[j[k].x] + 1, j[k].x + 1) * po;
po *= y[k];
j[k] = p[j[k].x];
}
cout << ans << '\n';
}
}
torisasami4