結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | Mao-beta |
提出日時 | 2024-04-03 19:36:49 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 2,186 bytes |
コンパイル時間 | 388 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 817,920 KB |
最終ジャッジ日時 | 2024-10-01 00:02:51 |
合計ジャッジ時間 | 5,945 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
11,136 KB |
testcase_01 | AC | 31 ms
11,136 KB |
testcase_02 | AC | 338 ms
12,544 KB |
testcase_03 | AC | 58 ms
11,392 KB |
testcase_04 | AC | 150 ms
11,776 KB |
testcase_05 | AC | 122 ms
11,776 KB |
testcase_06 | AC | 145 ms
11,776 KB |
testcase_07 | AC | 216 ms
12,288 KB |
testcase_08 | AC | 50 ms
11,392 KB |
testcase_09 | AC | 176 ms
12,160 KB |
testcase_10 | AC | 82 ms
11,648 KB |
testcase_11 | AC | 88 ms
11,520 KB |
testcase_12 | AC | 122 ms
11,904 KB |
testcase_13 | AC | 63 ms
11,392 KB |
testcase_14 | AC | 39 ms
11,136 KB |
testcase_15 | AC | 257 ms
12,544 KB |
testcase_16 | AC | 229 ms
12,288 KB |
testcase_17 | AC | 82 ms
11,648 KB |
testcase_18 | AC | 236 ms
12,288 KB |
testcase_19 | AC | 330 ms
12,544 KB |
testcase_20 | AC | 154 ms
18,944 KB |
testcase_21 | MLE | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
ソースコード
import sys import math import bisect from heapq import heapify, heappop, heappush from collections import deque, defaultdict, Counter from functools import lru_cache from itertools import accumulate, combinations, permutations, product sys.setrecursionlimit(1000000) MOD = 10 ** 9 + 7 MOD99 = 998244353 input = lambda: sys.stdin.readline().strip() NI = lambda: int(input()) NMI = lambda: map(int, input().split()) NLI = lambda: list(NMI()) SI = lambda: input() SMI = lambda: input().split() SLI = lambda: list(SMI()) EI = lambda m: [NLI() for _ in range(m)] # 行列積(任意サイズ) def mul_matrix(A, B, mod=998244353): Ah = len(A) Aw = len(A[0]) Bh = len(B) Bw = len(B[0]) assert Aw == Bh C = [[0] * Bw for _ in range(Ah)] for h in range(Ah): Arow = A[h] Crow = C[h] for i in range(Aw): a = Arow[i] Brow = B[i] for w in range(Bw): Crow[w] = (Crow[w] + a * Brow[w]) % mod return C # 正方行列の累乗 mod def pow_matrix(A, n, mod=998244353): assert len(A) == len(A[0]) bitn = len(bin(n)) - 2 pows = [] size = len(A) E = [[0] * size for _ in range(size)] for i in range(size): E[i][i] = 1 pows.append(A) ans = E for i in range(bitn): if (n >> i) & 1: ans = mul_matrix(pows[-1], ans, mod) pows.append(mul_matrix(pows[-1], pows[-1], mod)) return ans def main(): N, K = NMI() A = NLI() if K <= 10**6: S = sum(A) for i in range(K-N): A.append(S) S = S - A[i] + A[i+N] print(A[-1], sum(A)) else: B = [[0]*(N+1) for _ in range(N+1)] B[0] = [1] * (N+1) B[0][-1] = 0 for i in range(N-1): B[i+1][i] = 1 B[-1] = [1] * (N+1) C = pow_matrix(B, K-N, MOD) A = A[::-1] A.append(sum(A)) f, s = 0, 0 for j in range(N+1): f += C[0][j] * A[j] % MOD f %= MOD for j in range(N+1): s += C[-1][j] * A[j] % MOD s %= MOD print(f, s) if __name__ == "__main__": main()