結果
| 問題 |
No.2012 Largest Triangle
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-04-04 02:51:33 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 711 ms / 2,500 ms |
| コード長 | 18,749 bytes |
| コンパイル時間 | 11,127 ms |
| コンパイル使用メモリ | 235,620 KB |
| 実行使用メモリ | 19,008 KB |
| 最終ジャッジ日時 | 2024-10-01 00:14:30 |
| 合計ジャッジ時間 | 21,330 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 41 |
ソースコード
// 注意cpp里的迭代器:
// !Begin指向第一个元素,
// !End指向最后一个元素的下一个位置,
// 这里的迭代器设计为:
// !Begin指向第一个元素的前一个位置,First指向第一个元素
// !Last指向最后一个元素,End指向最后一个元素的下一个位置
// https://maspypy.github.io/library/convex/cht.hpp
// 在 C++ 中,long double 类型不等同于 float64。
// !long double 是一种浮点数类型,具有比 double 类型更高的精度和范围 (18位)。
// int 通常对应于 C++ 中的 double 类型,而非 long double 类型。
// long double 类型的精度和范围因编译器和平台而异。
// 在某些实现中,long double 可能与 double 类型具有相同的精度,
// 而在其他实现中,它可能具有更高的精度。
// 例如,在 x86 和 x86_64 架构上,long double 通常具有 80 位的扩展精度。
package main
import (
"bufio"
"fmt"
stdio "io"
"math/bits"
"os"
"sort"
"strconv"
"strings"
"time"
)
// from https://atcoder.jp/users/ccppjsrb
var io *Iost
type Iost struct {
Scanner *bufio.Scanner
Writer *bufio.Writer
}
func NewIost(fp stdio.Reader, wfp stdio.Writer) *Iost {
const BufSize = 2000005
scanner := bufio.NewScanner(fp)
scanner.Split(bufio.ScanWords)
scanner.Buffer(make([]byte, BufSize), BufSize)
return &Iost{Scanner: scanner, Writer: bufio.NewWriter(wfp)}
}
func (io *Iost) Text() string {
if !io.Scanner.Scan() {
panic("scan failed")
}
return io.Scanner.Text()
}
func (io *Iost) Atoi(s string) int { x, _ := strconv.Atoi(s); return x }
func (io *Iost) Atoi64(s string) int64 { x, _ := strconv.ParseInt(s, 10, 64); return x }
func (io *Iost) Atof64(s string) float64 { x, _ := strconv.ParseFloat(s, 64); return x }
func (io *Iost) NextInt() int { return io.Atoi(io.Text()) }
func (io *Iost) NextInt64() int64 { return io.Atoi64(io.Text()) }
func (io *Iost) NextFloat64() float64 { return io.Atof64(io.Text()) }
func (io *Iost) Print(x ...interface{}) { fmt.Fprint(io.Writer, x...) }
func (io *Iost) Printf(s string, x ...interface{}) { fmt.Fprintf(io.Writer, s, x...) }
func (io *Iost) Println(x ...interface{}) { fmt.Fprintln(io.Writer, x...) }
func main() {
最大三角形面积()
// abc244_h()
}
func abc244_h() {
// https://atcoder.jp/contests/abc244/tasks/abc244_h
// - 向点集中追加一个点(a,b), 表示为 a*x + b*y
// - 查询 x=xi,y=yi 时的最大值
in := os.Stdin
out := os.Stdout
io = NewIost(in, out)
defer func() {
io.Writer.Flush()
}()
q := io.NextInt()
cht := NewLineContainer2D(q)
for i := 0; i < q; i++ {
a, b, x, y := io.NextInt(), io.NextInt(), io.NextInt(), io.NextInt()
cht.Add(a, b)
io.Println(cht.QueryMax(x, y))
}
}
func 最大三角形面积() {
// https://yukicoder.me/problems/no/2012
// 平面上有n个点, 问最其中两点和原点组成的三角形的最大面积的2倍
// !将(a,-b)加入点集,对每个点(x,y)查询最大的a*y-b*x
in := os.Stdin
out := os.Stdout
io = NewIost(in, out)
defer func() {
io.Writer.Flush()
}()
n := io.NextInt()
points := make([][2]int, n)
for i := 0; i < n; i++ {
points[i] = [2]int{io.NextInt(), io.NextInt()}
}
cht := NewLineContainer2D(n)
for _, p := range points {
a, b := p[0], p[1]
cht.Add(a, -b)
}
res := 0
for _, p := range points {
x, y := p[0], p[1]
res = max(res, cht.QueryMax(y, x))
}
io.Println(res)
}
const INF int = 1e18
type Line struct {
k, b int
p1, p2 int // p=p1/p2
}
type LineContainer2D struct {
minCHT, maxCHT *_LineContainer
kMax, kMin int
bMax, bMin int
}
func NewLineContainer2D(capacity int) *LineContainer2D {
return &LineContainer2D{
minCHT: _NewLineContainer(true, capacity),
maxCHT: _NewLineContainer(false, capacity),
kMax: -INF,
kMin: INF,
bMax: -INF,
bMin: INF,
}
}
// 追加 a*x + b*y.
func (lc *LineContainer2D) Add(a, b int) {
lc.minCHT.Add(b, a)
lc.maxCHT.Add(b, a)
lc.kMax = max(lc.kMax, a)
lc.kMin = min(lc.kMin, a)
lc.bMax = max(lc.bMax, b)
lc.bMin = min(lc.bMin, b)
}
// 查询 x=xi,y=yi 时的最大值 max_{a,b} (ax + by).
func (lc *LineContainer2D) QueryMax(x, y int) int {
if lc.minCHT.Size() == 0 {
return -INF
}
if x == 0 {
if y > 0 {
return lc.bMax * y
}
return lc.bMin * y
}
if y == 0 {
if x > 0 {
return lc.kMax * x
}
return lc.kMin * x
}
// y/x
if x > 0 {
l := lc.maxCHT.sl.BisectLeftByPair(y, x)
line := lc.maxCHT.sl.At(l)
a := line.b
b := line.k
return a*x + b*y
}
l := lc.minCHT.sl.BisectLeftByPair(y, x)
line := lc.minCHT.sl.At(l)
a := -line.b
b := -line.k
return a*x + b*y
}
// 查询 x=xi,y=yi 时的最小值 min_{a,b} (ax + by).
func (lc *LineContainer2D) QueryMin(x, y int) int { return -lc.QueryMax(-x, -y) }
type _LineContainer struct {
minimize bool
sl *SpecializedSortedList
}
func _NewLineContainer(minimize bool, capacity int) *_LineContainer {
return &_LineContainer{
minimize: minimize,
sl: NewSpecializedSortedList(func(a, b *Line) bool { return a.k < b.k }),
}
}
func (lc *_LineContainer) Add(k, m int) {
if lc.minimize {
k, m = -k, -m
}
newLine := &Line{k: k, b: m}
lc.sl.Add(newLine)
it1 := lc.sl.BisectRightByK(newLine.k) - 1
it2 := it1
line2 := lc.sl.At(it2)
it1++
it3 := it2
for lc.insect(line2, lc.sl.At(it1)) {
lc.sl.Pop(it1)
}
if it3 != 0 {
it3--
line3 := lc.sl.At(it3)
if lc.insect(line3, line2) {
lc.sl.Pop(it2)
lc.insect(line3, lc.sl.At(it2))
}
}
if it3 == 0 {
return
}
dp1, dp2 := lc.sl.At(it3-1), lc.sl.At(it3)
for it3 != 0 {
it2 := it3
if lessPair(dp1.p1, dp1.p2, dp2.p1, dp2.p2) {
break
}
it3--
lc.sl.Pop(it2)
lc.insect(dp1, lc.sl.At(it2))
dp1, dp2 = lc.sl.At(it3-1), dp1
}
}
// 查询 kx + m 的最小值(或最大值).
func (lc *_LineContainer) Query(x int) int {
if lc.sl.Len() == 0 {
panic("empty container")
}
pos := lc.sl.BisectLeftByPair(x, 1)
line := lc.sl.At(pos)
v := line.k*x + line.b
if lc.minimize {
return -v
}
return v
}
func (lc *_LineContainer) Size() int32 { return lc.sl.Len() }
// 这个函数在向集合添加新线或删除旧线时用于计算交点。
// 计算线性函数x和y的交点,并将结果存储在x->p中。
func (lc *_LineContainer) insect(line1, line2 *Line) bool {
if line2 == nil {
line1.p1 = INF
line1.p2 = 1
return false
}
if line1.k == line2.k {
if line1.b > line2.b {
line1.p1 = INF
line1.p2 = 1
} else {
line1.p1 = INF
line1.p2 = -1
}
} else {
// lc_div
line1.p1 = line2.b - line1.b
line1.p2 = line1.k - line2.k
}
return !lessPair(line1.p1, line1.p2, line2.p1, line2.p2)
}
type _Value = *Line
type _node struct {
left, right int32
size int32
priority uint64
value _Value
}
type _SL struct {
seed uint64
root int32
nodes []_node
}
func _NSL(initCapacity int) *_SL {
sl := &_SL{
seed: uint64(time.Now().UnixNano()/2 + 1),
nodes: make([]_node, 0, max(initCapacity, 16)),
}
dummy := &_node{size: 0, priority: sl.nextRand(), value: &Line{p2: 1}} // dummy node 0
sl.nodes = append(sl.nodes, *dummy)
return sl
}
func (sl *_SL) pushUp(root int32) {
sl.nodes[root].size = sl.nodes[sl.nodes[root].left].size + sl.nodes[sl.nodes[root].right].size + 1
}
func (sl *_SL) Add(value _Value) {
var x, y, z int32
sl.splitByValue(sl.root, value.k, &x, &y, false)
z = sl.newNode(value)
sl.root = sl.merge(sl.merge(x, z), y)
}
func (sl *_SL) At(index int32) _Value {
if index < 0 || index >= sl.Len() {
return nil
}
return sl.nodes[sl.kthNode(sl.root, index+1)].value
}
func (sl *_SL) Pop(index int32) _Value {
index += 1 // dummy offset
var x, y, z int32
sl.splitByRank(sl.root, index, &y, &z)
sl.splitByRank(y, index-1, &x, &y)
res := sl.nodes[y].value
sl.root = sl.merge(x, z)
return res
}
func (sl *_SL) BisectLeft(k int) int32 {
var x, y int32
sl.splitByValue(sl.root, k, &x, &y, true)
res := sl.nodes[x].size
sl.root = sl.merge(x, y)
return res
}
func (sl *_SL) BisectLeftByPair(a, b int) int32 {
var x, y int32
sl.splitByValueWith(sl.root, a, b, &x, &y)
res := sl.nodes[x].size
sl.root = sl.merge(x, y)
return res
}
func (sl *_SL) BisectRightByK(k int) int32 {
var x, y int32
sl.splitByValue(sl.root, k, &x, &y, false)
res := sl.nodes[x].size
sl.root = sl.merge(x, y)
return res
}
func (sl *_SL) String() string {
sb := []string{"SortedList{"}
values := []string{}
for i := int32(0); i < sl.Len(); i++ {
values = append(values, fmt.Sprintf("%v", sl.At(i)))
}
sb = append(sb, strings.Join(values, ","), "}")
return strings.Join(sb, "")
}
func (sl *_SL) Len() int32 {
return sl.nodes[sl.root].size
}
func (sl *_SL) kthNode(root int32, k int32) int32 {
cur := root
for cur != 0 {
if sl.nodes[sl.nodes[cur].left].size+1 == k {
break
} else if sl.nodes[sl.nodes[cur].left].size >= k {
cur = sl.nodes[cur].left
} else {
k -= sl.nodes[sl.nodes[cur].left].size + 1
cur = sl.nodes[cur].right
}
}
return cur
}
func (sl *_SL) splitByValue(root int32, k int, x, y *int32, strictLess bool) {
if root == 0 {
*x, *y = 0, 0
return
}
if strictLess {
if sl.nodes[root].value.k < k {
*x = root
sl.splitByValue(sl.nodes[root].right, k, &sl.nodes[root].right, y, strictLess)
} else {
*y = root
sl.splitByValue(sl.nodes[root].left, k, x, &sl.nodes[root].left, strictLess)
}
} else {
if sl.nodes[root].value.k <= k {
*x = root
sl.splitByValue(sl.nodes[root].right, k, &sl.nodes[root].right, y, strictLess)
} else {
*y = root
sl.splitByValue(sl.nodes[root].left, k, x, &sl.nodes[root].left, strictLess)
}
}
sl.pushUp(root)
}
func (sl *_SL) splitByValueWith(root int32, a1, b1 int, x, y *int32) {
if root == 0 {
*x, *y = 0, 0
return
}
a2, b2 := sl.nodes[root].value.p1, sl.nodes[root].value.p2
if lessPair(a2, b2, a1, b1) {
*x = root
sl.splitByValueWith(sl.nodes[root].right, a1, b1, &sl.nodes[root].right, y)
} else {
*y = root
sl.splitByValueWith(sl.nodes[root].left, a1, b1, x, &sl.nodes[root].left)
}
sl.pushUp(root)
}
// Split by rank.
// Split the tree rooted at root into two trees, x and y, such that the size of x is k.
// x is the left subtree, y is the right subtree.
func (sl *_SL) splitByRank(root, k int32, x, y *int32) {
if root == 0 {
*x, *y = 0, 0
return
}
if k <= sl.nodes[sl.nodes[root].left].size {
*y = root
sl.splitByRank(sl.nodes[root].left, k, x, &sl.nodes[root].left)
sl.pushUp(*y)
} else {
*x = root
sl.splitByRank(sl.nodes[root].right, k-sl.nodes[sl.nodes[root].left].size-1, &sl.nodes[root].right, y)
sl.pushUp(*x)
}
}
func (sl *_SL) merge(x, y int32) int32 {
if x == 0 || y == 0 {
return x + y
}
if sl.nodes[x].priority < sl.nodes[y].priority {
sl.nodes[x].right = sl.merge(sl.nodes[x].right, y)
sl.pushUp(x)
return x
}
sl.nodes[y].left = sl.merge(x, sl.nodes[y].left)
sl.pushUp(y)
return y
}
func (sl *_SL) newNode(value _Value) int32 {
sl.nodes = append(sl.nodes, _node{
value: value,
size: 1,
priority: sl.nextRand(),
})
return int32(len(sl.nodes) - 1)
}
// https://nyaannyaan.github.io/library/misc/rng.hpp
func (sl *_SL) nextRand() uint64 {
sl.seed ^= sl.seed << 7
sl.seed ^= sl.seed >> 9
return sl.seed
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// 分母不为0的分数比较大小
//
// a1/b1 < a2/b2
func lessPair(a1, b1, a2, b2 int) bool {
if a1 == INF || a2 == INF { // 有一个是+-INF
return a1/b1 < a2/b2
}
diff := a1*b2 - a2*b1
mul := b1 * b2
return diff^mul < 0
}
const _LOAD int32 = 75 // 75/100/150/200
type S = *Line
type SpecializedSortedList struct {
less func(a, b S) bool
size int32
blocks [][]S
mins []S
tree []int32
shouldRebuildTree bool
}
func NewSpecializedSortedList(less func(a, b S) bool, elements ...S) *SpecializedSortedList {
elements = append(elements[:0:0], elements...)
res := &SpecializedSortedList{less: less}
sort.Slice(elements, func(i, j int) bool { return less(elements[i], elements[j]) })
n := int32(len(elements))
blocks := [][]S{}
for start := int32(0); start < n; start += _LOAD {
end := min32(start+_LOAD, n)
blocks = append(blocks, elements[start:end:end]) // !各个块互不影响, max参数也需要指定为end
}
mins := make([]S, len(blocks))
for i, cur := range blocks {
mins[i] = cur[0]
}
res.size = n
res.blocks = blocks
res.mins = mins
res.shouldRebuildTree = true
return res
}
func (sl *SpecializedSortedList) Add(value S) *SpecializedSortedList {
sl.size++
if len(sl.blocks) == 0 {
sl.blocks = append(sl.blocks, []S{value})
sl.mins = append(sl.mins, value)
sl.shouldRebuildTree = true
return sl
}
pos, index := sl._locRight(value)
sl._updateTree(pos, 1)
sl.blocks[pos] = append(sl.blocks[pos][:index], append([]S{value}, sl.blocks[pos][index:]...)...)
sl.mins[pos] = sl.blocks[pos][0]
// n -> load + (n - load)
if n := int32(len(sl.blocks[pos])); _LOAD+_LOAD < n {
sl.blocks = append(sl.blocks[:pos+1], append([][]S{sl.blocks[pos][_LOAD:]}, sl.blocks[pos+1:]...)...)
sl.mins = append(sl.mins[:pos+1], append([]S{sl.blocks[pos][_LOAD]}, sl.mins[pos+1:]...)...)
sl.blocks[pos] = sl.blocks[pos][:_LOAD:_LOAD] // !注意max的设置(为了让左右互不影响)
sl.shouldRebuildTree = true
}
return sl
}
func (sl *SpecializedSortedList) Pop(index int32) S {
if index < 0 {
index += sl.size
}
if index < 0 || index >= sl.size {
panic("index out of range")
}
pos, startIndex := sl._findKth(index)
value := sl.blocks[pos][startIndex]
sl._delete(pos, startIndex)
return value
}
func (sl *SpecializedSortedList) At(index int32) S {
if index < 0 {
index += sl.size
}
if index < 0 || index >= sl.size {
return nil
}
pos, startIndex := sl._findKth(index)
return sl.blocks[pos][startIndex]
}
func (sl *SpecializedSortedList) BisectRightByK(k int) int32 {
pos, index := sl._locRightByK(k)
return sl._queryTree(pos) + index
}
func (sl *SpecializedSortedList) BisectLeftByPair(a, b int) int32 {
pos, index := sl._locLeftByPair(a, b)
return sl._queryTree(pos) + index
}
func (sl *SpecializedSortedList) Clear() {
sl.size = 0
sl.blocks = sl.blocks[:0]
sl.mins = sl.mins[:0]
sl.tree = sl.tree[:0]
sl.shouldRebuildTree = true
}
func (sl *SpecializedSortedList) Len() int32 {
return sl.size
}
func (sl *SpecializedSortedList) _delete(pos, index int32) {
// !delete element
sl.size--
sl._updateTree(pos, -1)
sl.blocks[pos] = append(sl.blocks[pos][:index], sl.blocks[pos][index+1:]...)
if len(sl.blocks[pos]) > 0 {
sl.mins[pos] = sl.blocks[pos][0]
return
}
// !delete block
sl.blocks = append(sl.blocks[:pos], sl.blocks[pos+1:]...)
sl.mins = append(sl.mins[:pos], sl.mins[pos+1:]...)
sl.shouldRebuildTree = true
}
func (sl *SpecializedSortedList) _locLeft(value S) (pos, index int32) {
if sl.size == 0 {
return
}
// find pos
left := int32(-1)
right := int32(len(sl.blocks) - 1)
for left+1 < right {
mid := (left + right) >> 1
if !sl.less(sl.mins[mid], value) {
right = mid
} else {
left = mid
}
}
if right > 0 {
block := sl.blocks[right-1]
if !sl.less(block[len(block)-1], value) {
right--
}
}
pos = right
// find index
cur := sl.blocks[pos]
left = -1
right = int32(len(cur))
for left+1 < right {
mid := (left + right) >> 1
if !sl.less(cur[mid], value) {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *SpecializedSortedList) _locLeftByPair(a, b int) (pos, index int32) {
if sl.size == 0 {
return
}
// find pos
left := int32(-1)
right := int32(len(sl.blocks) - 1)
for left+1 < right {
mid := (left + right) >> 1
if !lessPair(sl.mins[mid].p1, sl.mins[mid].p2, a, b) {
right = mid
} else {
left = mid
}
}
if right > 0 {
block := sl.blocks[right-1]
last := block[len(block)-1]
if !lessPair(last.p1, last.p2, a, b) {
right--
}
}
pos = right
// find index
cur := sl.blocks[pos]
left = -1
right = int32(len(cur))
for left+1 < right {
mid := (left + right) >> 1
if !lessPair(cur[mid].p1, cur[mid].p2, a, b) {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *SpecializedSortedList) _locRight(value S) (pos, index int32) {
if sl.size == 0 {
return
}
// find pos
left := int32(0)
right := int32(len(sl.blocks))
for left+1 < right {
mid := (left + right) >> 1
if sl.less(value, sl.mins[mid]) {
right = mid
} else {
left = mid
}
}
pos = left
// find index
cur := sl.blocks[pos]
left = -1
right = int32(len(cur))
for left+1 < right {
mid := (left + right) >> 1
if sl.less(value, cur[mid]) {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *SpecializedSortedList) _locRightByK(k int) (pos, index int32) {
if sl.size == 0 {
return
}
// find pos
left := int32(0)
right := int32(len(sl.blocks))
for left+1 < right {
mid := (left + right) >> 1
if k < sl.mins[mid].k {
right = mid
} else {
left = mid
}
}
pos = left
// find index
cur := sl.blocks[pos]
left = -1
right = int32(len(cur))
for left+1 < right {
mid := (left + right) >> 1
if k < cur[mid].k {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *SpecializedSortedList) _buildTree() {
sl.tree = make([]int32, len(sl.blocks))
for i := 0; i < len(sl.blocks); i++ {
sl.tree[i] = int32(len(sl.blocks[i]))
}
tree := sl.tree
for i := 0; i < len(tree); i++ {
j := i | (i + 1)
if j < len(tree) {
tree[j] += tree[i]
}
}
sl.shouldRebuildTree = false
}
func (sl *SpecializedSortedList) _updateTree(index, delta int32) {
if sl.shouldRebuildTree {
return
}
tree := sl.tree
for i := index; i < int32(len(tree)); i |= i + 1 {
tree[i] += delta
}
}
func (sl *SpecializedSortedList) _queryTree(end int32) int32 {
if sl.shouldRebuildTree {
sl._buildTree()
}
tree := sl.tree
sum := int32(0)
for end > 0 {
sum += tree[end-1]
end &= end - 1
}
return sum
}
func (sl *SpecializedSortedList) _findKth(k int32) (pos, index int32) {
if k < int32(len(sl.blocks[0])) {
return 0, k
}
last := int32(len(sl.blocks) - 1)
lastLen := int32(len(sl.blocks[last]))
if k >= sl.size-lastLen {
return last, k + lastLen - sl.size
}
if sl.shouldRebuildTree {
sl._buildTree()
}
tree := sl.tree
pos = -1
m := int32(len(tree))
bitLength := bits.Len32(uint32(m))
for d := bitLength - 1; d >= 0; d-- {
next := pos + (1 << d)
if next < m && k >= tree[next] {
pos = next
k -= tree[pos]
}
}
return pos + 1, k
}
func min32(a, b int32) int32 {
if a < b {
return a
}
return b
}