結果

問題 No.8112 区間和係数多項式?
ユーザー ecottea
提出日時 2024-04-05 02:14:02
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 608 ms / 6,000 ms
コード長 10,423 bytes
コンパイル時間 4,552 ms
コンパイル使用メモリ 263,028 KB
最終ジャッジ日時 2025-02-20 20:14:56
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
//using mint = modint998244353;
using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#endif
void zikken() {
auto p = [](int x) {
return x - (x & -x);
};
vector<pii> lrs;
repi(i, 1, 16) {
int x = i;
while (x > 0) {
int y = p(x);
lrs.push_back({ y, x });
x = y;
}
}
uniq(lrs);
dump(lrs);
exit(0);
}
/*
(0,1) (0,2) (0,4) (0,8) (0,16) (2,3) (4,5) (4,6) (6,7) (8,9) (8,10) (8,12) (10,11) (12,13) (12,14) (14,15)
使
*/
//
/*
* Fenwick_tree<S, op, o, inv>(int n) : O(n)
* a[0..n) = o() (S, op, o, inv)
*
* Fenwick_tree<S, op, o, inv>(vS a) : O(n)
* a[0..n)
*
* set(int i, S x) : O(log n)
* a[i] = x
*
* S get(int i) : O(log n)
* a[i]
*
* S sum(int l, int r) : O(log n)
* Σa[l..r) o()
*
* add(int i, S x) : O(log n)
* a[i] += x
*
* int max_right(function<bool(S)>& f) : O(log n)
* f( Σa[0..r) ) = true r
* f( o() ) = truef 調
*/
template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)>
struct Fenwick_tree {
// https://algo-logic.info/binary-indexed-tree/
// + 1
int n;
// v[i] : Σa[*..i] i:1-indexedv[0] 使
vector<S> v;
// Σa[1..r] o() r:1-indexed
pair<S, mint> sum_sub(int r, mint y) const {
S res = o();
mint y_pow = 1;
// op()
while (r > 0) {
res = op(res, v[r] * y_pow);
y_pow *= y;
// r 1
r -= r & -r;
}
return { res, y_pow };
}
// a[0..n) = o()
Fenwick_tree(int n_) : n(n_ + 1), v(n, o()) {
// verify : https://judge.yosupo.jp/problem/range_kth_smallest
}
// a[0..n)
Fenwick_tree(const vector<S>& a) : n(sz(a) + 1), v(n) {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
//
rep(i, n - 1) v[i + 1] = a[i];
// op()
for (int pow2 = 1; 2 * pow2 < n; pow2 *= 2) {
for (int i = 2 * pow2; i < n; i += 2 * pow2) {
v[i] = op(v[i], v[i - pow2]);
}
}
}
Fenwick_tree() : n(0) {}
// a[i] = x i : 0-indexed
void set(int i, S x) {
assert(0 <= i && i < n);
//
S d = op(x, inv(get(i)));
add(i, d);
}
// a[i] i : 0-indexed
S get(int i) const {
assert(0 <= i && i < n);
return sum(i, i + 1);
}
// Σa[l..r) o() l, r : 0-indexed
S sum(int l, int r) const {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
chmax(l, 0); chmin(r, n);
if (l >= r) return o();
// 0-indexed [l, r)
// 1-indexed [l + 1, r]
// [1, r] [1, l]
return op(sum_sub(r, 1).first, inv(sum_sub(l, 1).first));
}
// a[i] += x i : 0-indexed
void add(int i, S x) {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
assert(0 <= i && i < n);
// i 1-indexed
i++;
// op()
while (i < n) {
v[i] = op(v[i], x);
// i 1
i += i & -i;
}
}
// f( Σa[0..r) ) = true r r : 0-indexed
int max_right(const function<bool(S)>& f) const {
// verify : https://www.spoj.com/problems/ALLIN1/
S x = o();
// [l+1, r] len
int l = 0;
for (int len = 1 << msb(n - 1); len > 0; len = len >> 1) {
int r = l + len;
if (r < n && f(op(x, v[r]))) {
x = op(x, v[r]);
l = r;
}
}
return l;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fenwick_tree& ft) {
rep(i, ft.n - 1) {
os << ft.get(i) << " ";
}
return os;
}
#endif
};
//
/* verify : https://atcoder.jp/contests/aising2019/tasks/aising2019_d */
using S601 = mint;
S601 op601(S601 a, S601 b) { return a + b; }
S601 e601() { return 0; }
S601 inv601(S601 a) { return -a; }
#define Sum_group S601, op601, e601, inv601
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
// zikken();
ll n; int b, q;
cin >> n >> b >> q;
mint::set_mod(b);
ll c2, c3, d2, d3; mint c1, d1, c4, d4, c5, d5;
cin >> c1 >> d1 >> c2 >> d2 >> c3 >> d3 >> c4 >> d4 >> c5 >> d5;
vm a(n);
a[0] = c1;
repi(i, 1, n - 1) a[i] = a[i - 1] * d1;
auto ini(a);
ini.erase(ini.begin());
Fenwick_tree<Sum_group> A(ini);
dump(A);
ll i = c2 % n, j = c3 % n; mint x = c4, y = c5;
rep(hoge, q) {
dump("--- i,j,x,y", i, j, x, y, "---");
if (i > 0) A.add(i - 1, x - a[i]);
a[i] = x;
dump(A);
mint res = 0, y_pow = 1;
if (j > 0) tie(res, y_pow) = A.sum_sub(j, y);
dump(res, y_pow);
res += a[0] * y_pow;
cout << res << "\n";
i = (i * d2) % n;
j = (j * d3) % n;
x *= d4;
y *= d5;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0