結果

問題 No.2717 Sum of Subarray of Subsequence
ユーザー oteraotera
提出日時 2024-04-05 22:16:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 36 ms / 2,000 ms
コード長 22,745 bytes
コンパイル時間 2,555 ms
コンパイル使用メモリ 212,676 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-01 02:30:02
合計ジャッジ時間 3,599 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 1 ms
6,816 KB
testcase_08 AC 1 ms
6,816 KB
testcase_09 AC 36 ms
6,816 KB
testcase_10 AC 35 ms
6,816 KB
testcase_11 AC 36 ms
6,820 KB
testcase_12 AC 36 ms
6,816 KB
testcase_13 AC 36 ms
6,816 KB
testcase_14 AC 35 ms
6,816 KB
testcase_15 AC 36 ms
6,816 KB
testcase_16 AC 36 ms
6,820 KB
testcase_17 AC 35 ms
6,820 KB
testcase_18 AC 35 ms
6,816 KB
testcase_19 AC 35 ms
6,816 KB
testcase_20 AC 2 ms
6,816 KB
testcase_21 AC 2 ms
6,820 KB
testcase_22 AC 36 ms
6,820 KB
testcase_23 AC 28 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *    author:  otera
 *    created: 04.05.2024 21:59:54
**/
#include<bits/stdc++.h>
#ifndef OTERA_MODINT
#define OTERA_MODINT 1


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


namespace otera {
    using modint107 = atcoder::modint1000000007;
    using modint998 = atcoder::modint998244353;
    using modint = atcoder::modint;
}; //namespace otera

std::ostream& operator<<(std::ostream& out, const atcoder::modint1000000007 &e) {
    out << e.val();
    return out;
}

std::ostream& operator<<(std::ostream& out, const atcoder::modint998244353 &e) {
    out << e.val();
    return out;
}

std::ostream& operator<<(std::ostream& out, const atcoder::modint &e) {
    out << e.val();
    return out;
}

#endif // OTERA_MODINT


namespace otera{
    template<typename T>
    class factorial {
        public:
        factorial() {}
        factorial(int n) {
            ensure(n);
        }
        T perm(const int n, const int k) {
            if(k < 0 or n < k) return 0;
            ensure(n);
            return fact_[n] * finv_[n - k];
        }
        T com(const int n, const int k) {
            if(n == k) return 1;
            if(n < k or n < 0 or k < 0) return 0;
            ensure(n);
            return fact_[n] * finv_[k] * finv_[n - k];
        }
        T hom(const int n, const int k) {
            if(n < 0 or k < 0) return 0;
            if(k == 0) return 1;
            return com(n + k - 1, k);
        }
        T fact(const int n) {
            if(n < 0) return 0;
            ensure(n);
            return fact_[n];
        }
        T finv(const int n) {
            if(n < 0) return 0;
            ensure(n);
            return finv_[n];
        }
        private:
        static std::vector<T> fact_, inv_, finv_;
        void ensure(const int n) {
            int sz = fact_.size();
            if(n + 1 <= sz) return;
            int next_sz = std::max(n + 1, sz * 2);
            fact_.resize(next_sz), finv_.resize(next_sz);
            for(int i = sz; i < next_sz; ++ i) {
                fact_[i] = fact_[i - 1] * i;
            }
            finv_[next_sz - 1] = T(1) / fact_[next_sz - 1];
            for(int i = next_sz - 1; i > sz; -- i) {
                finv_[i - 1] = finv_[i] * i;
            }
        }
    };
    template<typename T> std::vector<T> factorial<T>::fact_ {1, 1};
    template<typename T> std::vector<T> factorial<T>::finv_ {1, 1};
} // namespace otera


namespace otera {}
using namespace std;
using namespace otera;

struct io_setup {
    io_setup(int precision = 20) {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout << fixed << setprecision(precision);
    }
} io_setup_ {};

#define int long long

using ll = long long;
using ld = long double;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
#define repa(i, n) for(int i = 0; i < (n); ++ i)
#define repb(i, a, b) for(int i = (a); i < (b); ++ i)
#define repc(i, a, b, c) for(int i = (a); i < (b); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)
#define rep1a(i, n) for(int i = 1; i <= (n); ++ i)
#define rep1b(i, a, b) for(int i = (a); i <= (b); ++ i)
#define rep1c(i, a, b, c) for(int i = (a); i <= (b); i += (c))
#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)
#define rev_repa(i, n) for(int i=(n)-1;i>=0;i--)
#define rev_repb(i, a, b) for(int i=(b)-1;i>=(a);i--)
#define rev_rep(...) overload3(__VA_ARGS__, rev_repb, rev_repa)(__VA_ARGS__)
#define rev_rep1a(i, n) for(int i=(n);i>=1;i--)
#define rev_rep1b(i, a, b) for(int i=(b);i>=(a);i--)
#define rev_rep1(...) overload3(__VA_ARGS__, rev_rep1b, rev_rep1a)(__VA_ARGS__)
#define for_subset(t, s) for(ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
typedef pair<int, int> P;
typedef pair<ll, ll> LP;
#define pb push_back
#define pf push_front
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define mkp make_pair
#define mkt make_tuple
#define fr first
#define sc second
#define all(c) std::begin(c), std::end(c)
#define rall(c) std::rbegin(c), std::rend(c)
#define lb(c, x) distance(std::begin(c), lower_bound(all(c), (x)))
#define ub(c, x) distance(std::begin(c), upper_bound(all(c), (x)))
#define Sort(a) sort(all(a))
#define Rev(a) reverse(all(a))
#define Uniq(a) sort(all(a));(a).erase(unique(all(a)),std::end(a))
#define si(c) (int)(c).size()
inline ll popcnt(ull a){ return __builtin_popcountll(a); }
#define kth_bit(x, k) ((x>>k)&1)
#define unless(A) if(!(A))
#define elif else if
ll modulo(ll n, ll d){ return (n % d + d) % d; };
ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }
ll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; }
template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; }
template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; }
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)
#define vec(type,name,...) vector<type>name(__VA_ARGS__)
#define VEC(type,name,size) vector<type>name(size);in(name)
#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)
#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <class T, class U> using umap = unordered_map<T, U>;
template<class T> void scan(T& a){ cin >> a; }
template<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }
void print(){ cout << ' '; }
template<class T> void print(const T& a){ cout << a; }
template<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }
int out(){ cout << '\n'; return 0; }
template<class T> int out(const T& t){ print(t); cout << '\n'; return 0; }
template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }
#define CHOOSE(a) CHOOSE2 a
#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x
#define debug_1(x1) cout<<#x1<<": "<<x1<<endl
#define debug_2(x1,x2) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<endl
#define debug_3(x1,x2,x3) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<endl
#define debug_4(x1,x2,x3,x4) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<", "#x4<<": "<<x4<<endl
#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<", "#x4<<": "<<x4<<", "#x5<<": "<<x5<<endl
#ifdef DEBUG
#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)
#define dump(...) { print(#__VA_ARGS__); print(":"); out(__VA_ARGS__); }
#else
#define debug(...)
#define dump(...)
#endif

using mint = modint998;
factorial<mint> bc;

void solve() {
    INT(n);
    VEC(int, a, n);

    mint ans = 0;

    rep(i, n) {
        if(n <= 3) {
            rep1(x, 0, i) {
                rep1(y, 0, n - 1 - i) {
                    ans += bc.com(i, x) * bc.com(n - 1 - i, y) * mint(x + 1) * mint(y + 1) * mint(a[i]);
                }
            }
        } else {    
            ans += mint(a[i]) * mint(2).pow(n - 3) * mint(i + 2) * mint(n - i + 1);
        }
    }

    out(ans);
}

signed main() {
    int testcase = 1;
    // in(testcase);
    while(testcase--) solve();
    return 0;
}
0