結果

問題 No.2716 Falcon Method
ユーザー deuteridayodeuteridayo
提出日時 2024-04-05 22:19:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,285 ms / 2,000 ms
コード長 6,248 bytes
コンパイル時間 4,725 ms
コンパイル使用メモリ 275,256 KB
実行使用メモリ 144,212 KB
最終ジャッジ日時 2024-10-01 02:34:06
合計ジャッジ時間 24,215 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,824 KB
testcase_06 AC 5 ms
6,816 KB
testcase_07 AC 5 ms
6,816 KB
testcase_08 AC 6 ms
6,824 KB
testcase_09 AC 6 ms
6,816 KB
testcase_10 AC 5 ms
6,820 KB
testcase_11 AC 1,243 ms
136,976 KB
testcase_12 AC 1,120 ms
137,084 KB
testcase_13 AC 1,025 ms
139,276 KB
testcase_14 AC 1,086 ms
115,632 KB
testcase_15 AC 966 ms
132,456 KB
testcase_16 AC 962 ms
115,956 KB
testcase_17 AC 1,016 ms
121,268 KB
testcase_18 AC 1,165 ms
126,516 KB
testcase_19 AC 921 ms
113,644 KB
testcase_20 AC 929 ms
130,668 KB
testcase_21 AC 1,002 ms
118,900 KB
testcase_22 AC 1,248 ms
144,112 KB
testcase_23 AC 1,285 ms
144,212 KB
testcase_24 AC 1,275 ms
144,008 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 2 ms
6,824 KB
testcase_27 AC 1,261 ms
144,124 KB
testcase_28 AC 1,283 ms
144,004 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
struct edge;
using graph = vector<vector<edge>>;
#define endl '\n'
int const INF = 1<<30;
lint const INF64 = 1LL<<61;
lint const mod107 = 1e9+7;
using mint107 = modint1000000007;
long const mod = 998244353;
using mint = modint998244353;
lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}
lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}
lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;}
lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;}
double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[20000001]; bool firstCallnCr = true; 
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0;
if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define vec vector
#define pb push_back
#define se second
#define fi first
#define all(x) x.begin(),x.end()
#define rall(x) x.rbegin(),x.rend()
unsigned long Rand() {
  static unsigned long x=123456789, y=362436069, z=521288629, w=88675123;
  unsigned long t=(x^(x<<11));
  x=y; y=z; z=w;
  return ( w=(w^(w>>19))^(t^(t>>8)) );
}



struct Point {
    lint x, y;
    int quad;
    Point(lint X, lint Y) {
        x = X;
        y = Y;
        quad = getQuadrant();
    }
    int getQuadrant() {
        if(x >= 0) {
            if(y >= 0) return 1;
            else return 4;
        } else {
            if(y >= 0) return 2;
            else return 3;
        }
    }
};

bool operator<(const Point &left, const Point &right) {
    if(left.quad == right.quad) {
        return left.y * right.x < left.x * right.y;
    } else {
        return left.quad < right.quad;
    }
}

struct Frac {
    lint upper, lower;
    Frac() {
        Frac(0,1);
    }
    Frac(lint u, lint l) {
        assert(l != 0);
        if(u <= 0 && l < 0) {
            upper = -u;
            lower = -l;
        } else {
            upper = u;
            lower = l;
        }
        reduction();
    }

    Frac(lint u) {
        upper = u;
        lower = 1;
    } 

    void reduction() {
        if(upper != 0) {
            lint g = gcd(abs(upper), abs(lower));
            upper /= g;
            lower /= g;
        
            if(lower < 0) {
                lower *= -1;
                upper *= -1;
            }
        } else {
            lower = 1;
        }
    }

    Frac operator+(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower + lower*other.upper;
        return Frac(U, L);
    }

    Frac operator-(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower - lower*other.upper;
        upper = U;
        lower = L;
        return Frac(U, L);
    }

    bool operator<=(const Frac &other) {
        return upper*other.lower <= lower*other.upper;
    }

    Frac operator*(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper * other.upper;
        return Frac(U, L);
    }

    Frac operator/(const Frac &other) {
        assert(other.upper != 0);
        lint L = lower * other.upper;
        lint U = upper * other.lower;
        return Frac(U, L);
    }
};

bool operator<(const Frac &left, const Frac &right) {
    return left.upper*right.lower < left.lower*right.upper;
}
lint extGCD(lint a, lint b, lint &x, lint &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    lint d = extGCD(b, a%b, y, x);
    y -= a/b * x;
    return d;
}

struct edge{
    lint to;
    lint cost;
};

vector<lint>dijkstra(int s, graph &g) {
    vec<lint>ret(g.size(), INF64);
    priority_queue<pair<lint, lint>>que;
    que.push({-0, s});
    ret[s] = 0;
    while(!que.empty()) {
        auto q = que.top();
        que.pop();
        for(auto e: g[q.second]) {
            if(ret[e.to] > -q.first + e.cost) {
                ret[e.to] = -q.first + e.cost;
                que.push({-ret[e.to], e.to});
            }
        }
    }
    return ret;
}
int main(){
    lint n,q;
    cin >> n >> q;
    string s;
    cin >> s;
    vec<vec<lint>>dx(n, vec<lint>(40));
    vec<vec<lint>>dy(n, vec<lint>(40));
    rep(i, n) {
        if(s[i] == 'R') {
            dy[i][0] = 1;
        } else {
            dx[i][0] = 1;
        }
    }
    lint dp = 1;
    rep(i, 40) {
        rep(j, n) {
            dx[j][i+1] = dx[j][i] + dx[(j+dp)%n][i];
            dy[j][i+1] = dy[j][i] + dy[(j+dp)%n][i];

        }
        dp = (dp*2)%n;
    }



    rep(qq, q) {
        lint H, W, p;
        cin >> H >> W >> p;
        lint h = 0, w = 0;
        for(lint i = 39; i >= 0; i--) {
            if(h + dx[p][i] < H && w + dy[p][i] < W) {
                h += dx[p][i];
                w += dy[p][i];
                p += 1LL << i;
                p %= n;
            }
            // cerr << p << " " << h << " " << w << endl;
        }
        p = (p+1)%n;
        cout << p << endl;
    }

}

0