結果

問題 No.2717 Sum of Subarray of Subsequence
ユーザー だれだれ
提出日時 2024-04-05 22:35:43
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 110 ms / 2,000 ms
コード長 8,533 bytes
コンパイル時間 3,882 ms
コンパイル使用メモリ 241,292 KB
実行使用メモリ 30,324 KB
最終ジャッジ日時 2024-10-01 02:45:21
合計ジャッジ時間 6,682 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 34 ms
18,960 KB
testcase_01 AC 35 ms
18,948 KB
testcase_02 AC 37 ms
19,032 KB
testcase_03 AC 33 ms
18,816 KB
testcase_04 AC 36 ms
18,924 KB
testcase_05 AC 35 ms
18,812 KB
testcase_06 AC 35 ms
18,968 KB
testcase_07 AC 36 ms
18,960 KB
testcase_08 AC 41 ms
18,820 KB
testcase_09 AC 110 ms
30,104 KB
testcase_10 AC 97 ms
30,132 KB
testcase_11 AC 97 ms
30,280 KB
testcase_12 AC 97 ms
30,312 KB
testcase_13 AC 102 ms
30,312 KB
testcase_14 AC 95 ms
30,204 KB
testcase_15 AC 95 ms
30,292 KB
testcase_16 AC 97 ms
30,104 KB
testcase_17 AC 96 ms
30,292 KB
testcase_18 AC 96 ms
30,324 KB
testcase_19 AC 96 ms
30,104 KB
testcase_20 AC 37 ms
18,816 KB
testcase_21 AC 37 ms
18,812 KB
testcase_22 AC 95 ms
30,312 KB
testcase_23 AC 87 ms
30,296 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <unordered_set>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
#define GET_MACRO(_1, _2, _3, NAME, ...) NAME
#define _rep(i, n) _rep2(i, 0, n)
#define _rep2(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define rep(...) GET_MACRO(__VA_ARGS__, _rep2, _rep)(__VA_ARGS__)
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define UNIQUE(x)                      \
    std::sort((x).begin(), (x).end()); \
    (x).erase(std::unique((x).begin(), (x).end()), (x).end())
using i64 = long long;
template <class T, class U>
bool chmin(T& a, const U& b) {
    return (b < a) ? (a = b, true) : false;
}
template <class T, class U>
bool chmax(T& a, const U& b) {
    return (b > a) ? (a = b, true) : false;
}
template <class T = std::string, class U = std::string>
inline void YesNo(bool f = 0, const T yes = "Yes", const U no = "No") {
    if (f)
        std::cout << yes << "\n";
    else
        std::cout << no << "\n";
}
namespace io {
template <typename T>
istream& operator>>(istream& i, vector<T>& v) {
    rep(j, v.size()) i >> v[j];
    return i;
}
template <typename T>
string join(vector<T>& v) {
    stringstream s;
    rep(i, v.size()) s << ' ' << v[i];
    return s.str().substr(1);
}
template <typename T>
ostream& operator<<(ostream& o, vector<T>& v) {
    if (v.size()) o << join(v);
    return o;
}
template <typename T>
string join(vector<vector<T>>& vv) {
    string s = "\n";
    rep(i, vv.size()) s += join(vv[i]) + "\n";
    return s;
}
template <typename T>
ostream& operator<<(ostream& o, vector<vector<T>>& vv) {
    if (vv.size()) o << join(vv);
    return o;
}

template <class T, class U>
istream& operator>>(istream& i, pair<T, U>& p) {
    i >> p.first >> p.second;
    return i;
}

template <class T, class U>
ostream& operator<<(ostream& o, pair<T, U>& p) {
    o << p.first << " " << p.second;
    return o;
}

void OUT() { std::cout << "\n"; }

template <class Head, class... Tail>
void OUT(Head&& head, Tail&&... tail) {
    std::cout << head;
    if (sizeof...(tail)) std::cout << ' ';
    OUT(std::forward<Tail>(tail)...);
}

void OUTL() { std::cout << std::endl; }

template <class Head, class... Tail>
void OUTL(Head&& head, Tail&&... tail) {
    std::cout << head;
    if (sizeof...(tail)) std::cout << ' ';
    OUTL(std::forward<Tail>(tail)...);
}

void IN() {}

template <class Head, class... Tail>
void IN(Head&& head, Tail&&... tail) {
    cin >> head;
    IN(std::forward<Tail>(tail)...);
}

}  // namespace io
using namespace io;

namespace useful {
long long modpow(long long a, long long b, long long mod) {
    long long res = 1;
    while (b) {
        if (b & 1) res *= a, res %= mod;
        a *= a;
        a %= mod;
        b >>= 1;
    }
    return res;
}

bool is_pow2(long long x) { return x > 0 && (x & (x - 1)) == 0; }

template <class T>
void rearrange(vector<T>& a, vector<int>& p) {
    vector<T> b = a;
    for (int i = 0; i < int(a.size()); i++) {
        a[i] = b[p[i]];
    }
    return;
}

template <class T>
vector<pair<int, int>> rle_sequence(T& a) {
    vector<pair<int, int>> res;
    int n = a.size();
    if (n == 1) return vector<pair<int, int>>{{a[0], 1}};
    int l = 1;
    rep(i, n - 1) {
        if (a[i] == a[i + 1])
            l++;
        else {
            res.emplace_back(a[i], l);
            l = 1;
        }
    }
    res.emplace_back(a.back(), l);
    return res;
}

vector<pair<char, int>> rle_string(string a) {
    vector<pair<char, int>> res;
    int n = a.size();
    if (n == 1) return vector<pair<char, int>>{{a[0], 1}};
    int l = 1;
    rep(i, n - 1) {
        if (a[i] == a[i + 1])
            l++;
        else {
            res.emplace_back(a[i], l);
            l = 1;
        }
    }
    res.emplace_back(a.back(), l);
    return res;
}

vector<int> linear_sieve(int n) {
    vector<int> primes;
    vector<int> res(n + 1);
    iota(all(res), 0);
    for (int i = 2; i <= n; i++) {
        if (res[i] == i) primes.emplace_back(i);
        for (auto j : primes) {
            if (j * i > n) break;
            res[j * i] = j;
        }
    }
    return res;
    // return primes;
}

template <class T>
vector<long long> dijkstra(vector<vector<pair<int, T>>>& graph, int start) {
    int n = graph.size();
    vector<long long> res(n, 2e18);
    res[start] = 0;
    priority_queue<pair<long long, int>, vector<pair<long long, int>>,
                   greater<pair<long long, int>>>
        que;
    que.push({0, start});
    while (!que.empty()) {
        auto [c, v] = que.top();
        que.pop();
        if (res[v] < c) continue;
        for (auto [nxt, cost] : graph[v]) {
            auto x = c + cost;
            if (x < res[nxt]) {
                res[nxt] = x;
                que.push({x, nxt});
            }
        }
    }
    return res;
}

}  // namespace useful
using namespace useful;

template <int mod>
struct ModInt {
    int x;

    ModInt() : x(0) {}

    ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    ModInt& operator+=(const ModInt& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    ModInt& operator-=(const ModInt& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    ModInt& operator*=(const ModInt& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    ModInt& operator/=(const ModInt& p) {
        *this *= p.inverse();
        return *this;
    }

    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+() const { return ModInt(*this); }

    ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; }

    ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; }

    ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; }

    ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; }

    bool operator==(const ModInt& p) const { return x == p.x; }

    bool operator!=(const ModInt& p) const { return x != p.x; }

    ModInt inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return ModInt(u);
    }

    ModInt pow(int64_t n) const {
        ModInt ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const ModInt& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, ModInt& a) {
        int64_t t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }

    int get() const { return x; }

    static constexpr int get_mod() { return mod; }
};

using mint = ModInt<998244353>;

vector<mint> fact_calc(int x) {
    vector<mint> res(x + 1);
    res[0] = 1;
    for (int i = 0; i < x; i++) {
        res[i + 1] = res[i] * (i + 1);
    }
    return res;
}

vector<mint> ifact_calc(int x) {
    vector<mint> res(x + 1);
    mint t = 1;
    for (int i = 1; i <= x; i++) {
        t *= i;
    }
    res[x] = t.inverse();
    // res[x] = t.inv();
    for (int i = x; i > 0; i--) {
        res[i - 1] = res[i] * i;
    }
    return res;
}

auto fact = fact_calc(2000005);
auto ifact = ifact_calc(2000005);

mint comb(int x, int y) {
    if (x < 0 || y < 0 || x - y < 0) return 0;
    return fact[x] * ifact[y] * ifact[x - y];
}

mint perm(int x, int y) {
    if (x < 0 || x - y < 0) return 0;
    return fact[x] * ifact[x - y];
}

int main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    int n;
    IN(n);
    vector<i64> a(n);
    IN(a);
    mint ans = 0;
    vector<i64> f(n + 10), g(n + 10);
    rep(i, n + 10) {
        f[i] = (ifact[i] * (i + 1)).x;
        g[i] = (ifact[i]).x;
    }
    auto cv = atcoder::convolution(f, g);
    rep(i, n) {
        mint tmp1 = 0, tmp2 = 0;
        int m = n - i - 1;
        // rep(l, i + 1) tmp1 += comb(i, l) * (l + 1);
        // rep(r, m + 1) tmp2 += comb(m, r) * (r + 1);
        tmp1 = fact[i] * cv[i];
        tmp2 = fact[m] * cv[m];
        mint tmp = tmp1 * tmp2;
        ans += tmp * a[i];
    }
    OUT(ans);
}
0