結果
問題 | No.2717 Sum of Subarray of Subsequence |
ユーザー |
![]() |
提出日時 | 2024-04-05 22:40:48 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 6,153 bytes |
コンパイル時間 | 2,423 ms |
コンパイル使用メモリ | 201,088 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-01 02:48:08 |
合計ジャッジ時間 | 3,784 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 21 |
ソースコード
#pragma GCC optimize("O2")#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cctype>#include <cfenv>#include <cfloat>#include <chrono>#include <cinttypes>#include <climits>#include <cmath>#include <complex>#include <cstdarg>#include <cstddef>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <deque>#include <fstream>#include <functional>#include <initializer_list>#include <iomanip>#include <ios>#include <iostream>#include <istream>#include <iterator>#include <limits>#include <list>#include <map>#include <memory>#include <new>#include <numeric>#include <ostream>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <streambuf>#include <string>#include <tuple>#include <type_traits>#include <variant>#if __cplusplus >= 202002L#include <bit>#include <compare>#include <concepts>#include <numbers>#include <ranges>#include <span>#else#define ssize(v) (int)(v).size()#define popcount(x) __builtin_popcountll(x)constexpr int bit_width(const unsigned int x) { return x == 0 ? 0 : ((sizeof(unsigned int) * CHAR_BIT) - __builtin_clz(x)); }constexpr int bit_width(const unsigned long long x) { return x == 0 ? 0 : ((sizeof(unsigned long long) * CHAR_BIT) - __builtin_clzll(x)); }constexpr int countr_zero(const unsigned int x) { return x == 0 ? sizeof(unsigned int) * CHAR_BIT : __builtin_ctz(x); }constexpr int countr_zero(const unsigned long long x) { return x == 0 ? sizeof(unsigned long long) * CHAR_BIT : __builtin_ctzll(x); }constexpr unsigned int bit_ceil(const unsigned int x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1u << bit_width(x))); }constexpr unsigned long long bit_ceil(const unsigned long long x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1ull << bit_width(x))); }#endif#define int ll#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)#define INT128_MIN (-INT128_MAX - 1)#define clock chrono::steady_clock::now().time_since_epoch().count()#ifdef DEBUG#define dbg(x) cout << (#x) << " = " << x << '\n'#else#define dbg(x)#endifusing namespace std;using ll = long long;using ull = unsigned long long;using ldb = long double;using pii = pair<int, int>;using pll = pair<ll, ll>;//#define double ldbtemplate<class T>ostream& operator<<(ostream& os, const pair<T, T> pr) {return os << pr.first << ' ' << pr.second;}template<class T, size_t N>ostream& operator<<(ostream& os, const array<T, N> &arr) {for(const T &X : arr)os << X << ' ';return os;}template<class T>ostream& operator<<(ostream& os, const vector<T> &vec) {for(const T &X : vec)os << X << ' ';return os;}template<class T>ostream& operator<<(ostream& os, const set<T> &s) {for(const T &x : s)os << x << ' ';return os;}//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10//note: mod should be a prime less than 2^30.template<uint32_t mod>struct MontgomeryModInt {using mint = MontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 res = 1, base = mod;for(i32 i = 0; i < 31; i++)res *= base, base *= base;return -res;}static constexpr u32 get_mod() {return mod;}static constexpr u32 n2 = -u64(mod) % mod; //2^64 % modstatic constexpr u32 r = get_r(); //-P^{-1} % 2^32u32 a;static u32 reduce(const u64 &b) {return (b + u64(u32(b) * r) * mod) >> 32;}static u32 transform(const u64 &b) {return reduce(u64(b) * n2);}MontgomeryModInt() : a(0) {}MontgomeryModInt(const int64_t &b): a(transform(b % mod + mod)) {}mint pow(u64 k) const {mint res(1), base(*this);while(k) {if (k & 1)res *= base;base *= base, k >>= 1;}return res;}mint inverse() const { return (*this).pow(mod - 2); }u32 get() const {u32 res = reduce(a);return res >= mod ? res - mod : res;}mint& operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}mint& operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}mint& operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}mint& operator/=(const mint &b) {a = reduce(u64(a) * b.inverse().a);return *this;}mint operator-() { return mint() - mint(*this); }bool operator==(mint b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}bool operator!=(mint b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}friend mint operator+(mint a, mint b) { return a += b; }friend mint operator-(mint a, mint b) { return a -= b; }friend mint operator*(mint a, mint b) { return a *= b; }friend mint operator/(mint a, mint b) { return a /= b; }friend ostream& operator<<(ostream& os, const mint& b) {return os << b.get();}friend istream& operator>>(istream& is, mint& b) {int64_t val;is >> val;b = mint(val);return is;}};using mint = MontgomeryModInt<998244353>;mint pow2[200000];signed main() {ios::sync_with_stdio(false), cin.tie(NULL);pow2[0] = 1;for(int i = 1; i < 200000; i++)pow2[i] = pow2[i - 1] * 2;/*int n; cin >> n;vector<mint> cnt(n);for(int msk = 0; msk < (1 << n); msk++) {vector<int> a;for(int i = 0; i < n; i++)if (msk >> i & 1)a.emplace_back(i);for(int l = 0; l < ssize(a); l++)for(int r = l + 1; r <= ssize(a); r++)for(int m = l; m < r; m++)cnt[a[m]] += 1;}dbg(cnt);*/int n; cin >> n;vector<mint> a(n);for(mint &x : a) cin >> x;a.insert(a.begin(), 0);mint ans = 0;for(int i = 1; i <= n; i++) {mint c = pow2[n - 1];if (n >= 2)c += (n - 1) * pow2[n - 2];if (n >= 3)c += mint(i - 1) * (n - i) * pow2[n - 3];ans += c * a[i];//cout << c << " \n"[i == n];}cout << ans << '\n';return 0;}