結果

問題 No.2717 Sum of Subarray of Subsequence
ユーザー MisukiMisuki
提出日時 2024-04-05 22:40:48
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 30 ms / 2,000 ms
コード長 6,153 bytes
コンパイル時間 2,423 ms
コンパイル使用メモリ 201,088 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-01 02:48:08
合計ジャッジ時間 3,784 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
6,820 KB
testcase_01 AC 3 ms
6,820 KB
testcase_02 AC 3 ms
6,816 KB
testcase_03 AC 3 ms
6,816 KB
testcase_04 AC 3 ms
6,816 KB
testcase_05 AC 3 ms
6,816 KB
testcase_06 AC 3 ms
6,816 KB
testcase_07 AC 3 ms
6,816 KB
testcase_08 AC 3 ms
6,816 KB
testcase_09 AC 30 ms
6,816 KB
testcase_10 AC 30 ms
6,820 KB
testcase_11 AC 29 ms
6,816 KB
testcase_12 AC 29 ms
6,816 KB
testcase_13 AC 30 ms
6,820 KB
testcase_14 AC 30 ms
6,816 KB
testcase_15 AC 29 ms
6,820 KB
testcase_16 AC 29 ms
6,820 KB
testcase_17 AC 28 ms
6,816 KB
testcase_18 AC 29 ms
6,816 KB
testcase_19 AC 29 ms
6,816 KB
testcase_20 AC 3 ms
6,816 KB
testcase_21 AC 3 ms
6,820 KB
testcase_22 AC 30 ms
6,816 KB
testcase_23 AC 16 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>

#if __cplusplus >= 202002L

#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>

#else

#define ssize(v) (int)(v).size()
#define popcount(x) __builtin_popcountll(x)
constexpr int bit_width(const unsigned int x) { return x == 0 ? 0 : ((sizeof(unsigned int) * CHAR_BIT) - __builtin_clz(x)); }
constexpr int bit_width(const unsigned long long x) { return x == 0 ? 0 : ((sizeof(unsigned long long) * CHAR_BIT) - __builtin_clzll(x)); }
constexpr int countr_zero(const unsigned int x) { return x == 0 ? sizeof(unsigned int) * CHAR_BIT : __builtin_ctz(x); }
constexpr int countr_zero(const unsigned long long x) { return x == 0 ? sizeof(unsigned long long) * CHAR_BIT : __builtin_ctzll(x); }
constexpr unsigned int bit_ceil(const unsigned int x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1u << bit_width(x))); }
constexpr unsigned long long bit_ceil(const unsigned long long x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1ull << bit_width(x))); }

#endif

#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define clock chrono::steady_clock::now().time_since_epoch().count()

#ifdef DEBUG
#define dbg(x) cout << (#x) << " = " << x << '\n'
#else
#define dbg(x)
#endif

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb

template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(const T &X : arr)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(const T &X : vec)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(const T &x : s)
    os << x << ' ';
  return os;
}

//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be a prime less than 2^30.

template<uint32_t mod>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
  static constexpr u32 r = get_r(); //-P^{-1} % 2^32

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint a, mint b) { return a += b; }
  friend mint operator-(mint a, mint b) { return a -= b; }
  friend mint operator*(mint a, mint b) { return a *= b; }
  friend mint operator/(mint a, mint b) { return a /= b; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

using mint = MontgomeryModInt<998244353>;

mint pow2[200000];

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  pow2[0] = 1;
  for(int i = 1; i < 200000; i++)
    pow2[i] = pow2[i - 1] * 2;
/*
  int n; cin >> n;
  vector<mint> cnt(n);
  for(int msk = 0; msk < (1 << n); msk++) {
    vector<int> a;
    for(int i = 0; i < n; i++)
      if (msk >> i & 1)
        a.emplace_back(i);
    for(int l = 0; l < ssize(a); l++)
      for(int r = l + 1; r <= ssize(a); r++)
        for(int m = l; m < r; m++)
          cnt[a[m]] += 1;
  }

  dbg(cnt);
*/
  int n; cin >> n;
  vector<mint> a(n);
  for(mint &x : a) cin >> x;
  a.insert(a.begin(), 0);
  mint ans = 0;
  for(int i = 1; i <= n; i++) {
    mint c = pow2[n - 1];
    if (n >= 2)
      c += (n - 1) * pow2[n - 2];
    if (n >= 3)
      c += mint(i - 1) * (n - i) * pow2[n - 3];
    ans += c * a[i];
    //cout << c << " \n"[i == n];
  }

  cout << ans << '\n';

  return 0;
}
0