結果

問題 No.2718 Best Consonance
ユーザー tonegawatonegawa
提出日時 2024-04-05 23:05:43
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 53,552 bytes
コンパイル時間 3,838 ms
コンパイル使用メモリ 195,240 KB
実行使用メモリ 307,316 KB
最終ジャッジ日時 2024-10-01 03:34:35
合計ジャッジ時間 36,919 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6 ms
9,660 KB
testcase_01 AC 6 ms
9,688 KB
testcase_02 AC 6 ms
9,676 KB
testcase_03 AC 5 ms
9,512 KB
testcase_04 AC 6 ms
9,692 KB
testcase_05 AC 5 ms
9,684 KB
testcase_06 AC 5 ms
9,664 KB
testcase_07 AC 5 ms
9,608 KB
testcase_08 AC 6 ms
9,608 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 AC 7 ms
9,580 KB
testcase_35 AC 7 ms
9,512 KB
testcase_36 AC 937 ms
93,456 KB
testcase_37 AC 7 ms
9,648 KB
testcase_38 AC 3,103 ms
307,316 KB
testcase_39 AC 7 ms
9,596 KB
権限があれば一括ダウンロードができます

ソースコード

diff #


#include <iostream>
#include <string>
#include <vector>
#include <array>
#include <tuple>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <cmath>
#include <functional>
#include <cassert>
#include <climits>
#include <iomanip>
#include <numeric>
#include <memory>
#include <random>
#include <thread>
#include <chrono>
#define allof(obj) (obj).begin(), (obj).end()
#define range(i, l, r) for(int i=l;i<r;i++)
#define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end())
#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)
#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))
#define bit_kth(i, k) ((i >> k)&1)
#define bit_highest(i) (i?63-__builtin_clzll(i):-1)
#define bit_lowest(i) (i?__builtin_ctzll(i):-1)
#define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t))
using ll = long long;
using ld = long double;
using ul = uint64_t;
using pi = std::pair<int, int>;
using pl = std::pair<ll, ll>;
using namespace std;

template<typename F, typename S>
std::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){
  dest << p.first << ' ' << p.second;
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<std::vector<T>> &v){
  int sz = v.size();
  if(sz==0) return dest;
  for(int i=0;i<sz;i++){
    int m = v[i].size();
    for(int j=0;j<m;j++) dest << v[i][j] << (i!=sz-1&&j==m-1?'\n':' ');
  }
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){
  int sz = v.size();
  if(sz==0) return dest;
  for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
  dest << v[sz-1];
  return dest;
}
template<typename T, size_t sz>
std::ostream &operator<<(std::ostream &dest, const std::array<T, sz> &v){
  if(sz==0) return dest;
  for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
  dest << v[sz-1];
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::set<T> &v){
  for(auto itr=v.begin();itr!=v.end();){
    dest << *itr;
    itr++;
    if(itr!=v.end()) dest << ' ';
  }
  return dest;
}
template<typename T, typename E>
std::ostream &operator<<(std::ostream &dest, const std::map<T, E> &v){
  for(auto itr=v.begin();itr!=v.end();){
    dest << '(' << itr->first << ", " << itr->second << ')';
    itr++;
    if(itr!=v.end()) dest << '\n';
  }
  return dest;
}
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
  std::ostream::sentry s(dest);
  if (s) {
    __uint128_t tmp = value < 0 ? -value : value;
    char buffer[128];
    char *d = std::end(buffer);
    do {
      --d;
      *d = "0123456789"[tmp % 10];
      tmp /= 10;
    } while (tmp != 0);
    if (value < 0) {
      --d;
      *d = '-';
    }
    int len = std::end(buffer) - d;
    if (dest.rdbuf()->sputn(d, len) != len) {
      dest.setstate(std::ios_base::badbit);
    }
  }
  return dest;
}
template<typename T>
vector<T> make_vec(size_t sz, T val){return std::vector<T>(sz, val);}
template<typename T, typename... Tail>
auto make_vec(size_t sz, Tail ...tail){
  return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));
}
template<typename T>
vector<T> read_vec(size_t sz){
  std::vector<T> v(sz);
  for(int i=0;i<(int)sz;i++) std::cin >> v[i];
  return v;
}
template<typename T, typename... Tail>
auto read_vec(size_t sz, Tail ...tail){
  auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);
  for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...);
  return v;
}
long long max(long long a, int b){return std::max(a, (long long)b);}
long long max(int a, long long b){return std::max((long long)a, b);}
long long min(long long a, int b){return std::min(a, (long long)b);}
long long min(int a, long long b){return std::min((long long)a, b);}
long long modulo(long long a, long long m){a %= m; return a < 0 ? a + m : a;}

template<typename T>
struct safe_vector : std::vector<T>{
  using std::vector<T>::vector;
  T& operator [](size_t i){return this->at(i);}
};

template<typename T, int N>
struct safe_array : std::array<T, N>{
  using std::array<T, N>::array;
  T& operator [](size_t i){return this->at(i);}
};
ll ceil_div(ll x, ll y){
  assert(y > 0);
  return (x + (x > 0 ? y - 1 : 0)) / y;
}
ll floor_div(ll x, ll y){
  assert(y > 0);
  return (x + (x > 0 ? 0 : -y + 1)) / y;
}
void io_init(){
  std::cin.tie(nullptr);
  std::ios::sync_with_stdio(false);
}





#include <cstdint>

struct barrett_reduction{
  unsigned int mod;
  unsigned long long m;
  barrett_reduction(unsigned int _mod) : mod(_mod){
    m = ((__uint128_t)1 << 64) / mod;
  }
  unsigned int reduce(unsigned int a){
    unsigned long long q = ((__uint128_t)a * m) >> 64;
    a -= q * mod; // 0 <= a < 2 * mod
    // return a;
    return a >= mod ? a - mod : a;
  }
  unsigned int mul(unsigned int a, unsigned int b){
    return reduce((unsigned long long)a * b);
  }
  // {gcd(a, mod), x}, such that a * x ≡ gcd(a, mod)
  std::pair<unsigned int, unsigned int> inv(unsigned int a){
    if(a >= mod) a = reduce(a);
    if(a == 0) return {mod, 0};
    unsigned int s = mod, t = a;
    long long m0 = 0, m1 = 1;
    while(t){
      int u = s / t;
      s -= t * u;
      m0 -= m1 * u;
      std::swap(m0, m1);
      std::swap(s, t);
    }
    if(m0 < 0) m0 += mod / s;
    return {s, m0};
  }
};
// 64bit mod対応
// R = 2^64
// 偶数modだと壊れる
struct montgomery_reduction_64bit{
private:
  // [0, 2 * MOD)
  inline uint64_t reduce_unsafe(__uint128_t x) const{
    x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;
    return x;
  }
  void _set_mod(uint64_t mod){
    assert((mod < (1ULL << 63)) && (mod & 1));
    MOD = mod;
    NEG_INV = 0;
    __uint128_t s = 1, t = 0;
    for(int i = 0; i < 64; i++){
      if (~t & 1) {
        t += MOD;
        NEG_INV += s;
      }
      t >>= 1;
      s <<= 1;
    }
    R2 = ((__uint128_t)1 << 64) % MOD;
    R2 = R2 * R2 % MOD;
    ONE = generate(1);
  }
  __uint128_t MOD, NEG_INV, R2;
  uint64_t ONE;
public:
  montgomery_reduction_64bit(){}
  montgomery_reduction_64bit(uint64_t mod){_set_mod(mod);}
  void set_mod(uint64_t mod){
    _set_mod(mod);
  }
  uint64_t mod()const{
    return MOD;
  }
  inline uint64_t one()const{
    return ONE;
  }
  inline uint64_t generate(uint64_t x)const{
    return reduce((__uint128_t)x * R2);
  }
  inline uint64_t reduce(__uint128_t x)const{
    x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;
    return x < MOD ? x : x - MOD;
  }
  inline uint64_t fix(uint64_t x)const{
    return x < MOD ? x : x - MOD;
  }
  // [0, 2MOD)
  inline uint64_t mul(uint64_t mx, uint64_t my)const{
    return reduce_unsafe((__uint128_t)mx * my);
  }
  inline uint64_t mul_safe(uint64_t mx, uint64_t my)const{
    return reduce((__uint128_t)mx * my);
  }
  // [0, 2MOD)
  inline uint64_t add(uint64_t mx, uint64_t my)const{
    return (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);
  }
  inline uint64_t add_safe(uint64_t mx, uint64_t my)const{
    uint64_t res = (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);
    return res >= MOD ? res - MOD : res;
  }
  // [0, 2MOD)
  inline uint64_t sub(uint64_t mx, uint64_t my)const{
    if(my >= MOD) my -= MOD;
    return mx >= my ? mx - my : mx + MOD - my;
  }
  inline uint64_t sub_safe(uint64_t mx, uint64_t my)const{
    if(my >= MOD) my -= MOD;
    uint64_t res = mx >= my ? mx - my : mx + MOD - my;
    return res >= MOD ? res - MOD : res;
  }
  inline uint64_t pow(uint64_t ma, uint64_t b)const{
    uint64_t ret = one();
    while(b){
      if(b & 1) ret = mul(ret, ma);
      ma = mul(ma, ma);
      b >>= 1;
    }
    return ret;
  }
  inline uint64_t pow_safe(uint64_t ma, uint64_t b)const{
    return fix(pow(ma, b));
  }
};
unsigned long long mod_pow_mr(unsigned long long a, unsigned long long b, unsigned long long m){
  montgomery_reduction_64bit mr(m);
  return mr.reduce(mr.pow(mr.generate(a), b));
}

namespace prime_sieve{
  std::vector<int> primes, min_factor;// 素数, 各数を割り切る最小の素数
  // O(MAX_N loglog MAX_N)
  // [1, MAX_N]を扱えるように初期化
  void init(int MAX_N){
    min_factor.resize(MAX_N + 1, -1);
    for(int i = 2; i <= MAX_N; i++){
      if(min_factor[i] == -1){
        primes.push_back(i);
        min_factor[i] = i;
      }
      for(int p : primes){
        if((long long)p * i > MAX_N || p > min_factor[i]) break;
        min_factor[p * i] = p;
      }
    }
  }
  bool is_prime(int n){
    assert(n < min_factor.size());
    return n == min_factor[n];
  }
  // {{素因数, 数}}, O(log n)
  std::vector<std::pair<int, int>> factorize(int n){
    assert(n < min_factor.size());
    std::vector<std::pair<int, int>> ret;
    while(n > 1){
      int cnt = 0, f = min_factor[n];
      while(n % f == 0){
        n /= f;
        cnt++;
      }
      ret.push_back({f, cnt});
    }
    return ret;
  }
  // 約数列挙, O(√n)
  std::vector<int> divisor(int n){
    auto p = factorize(n);
    std::vector<std::vector<int>> x;
    for(int i = 0; i < p.size(); i++){
      x.push_back(std::vector<int>{1});
      for(int j = 0; j < p[i].second; j++) x[i].push_back(x[i][j] * p[i].first);
    }
    int l = 0, r = 1;
    std::vector<int> ret{1};
    for(int i = 0; i < x.size(); i++){
      for(auto e : x[i]){
        for(int j = l; j < r; j++){
          ret.push_back(ret[j] * e);
        }
      }
      l = r;
      r = ret.size();
    }
    return std::vector<int>(ret.begin() + l, ret.end());
  }
  // O(logN)
  unsigned long long totient_function(unsigned long long n){
    unsigned long long res = n;
    int prev = -1;
    while(n > 1){
      if(min_factor[n] > prev){
        res -= res / min_factor[n];
        prev = min_factor[n];
      }
      n /= min_factor[n];
    }
    return res;
  }
  int mobius_function(int x){
    int pcnt = 0;
    while(x > 1){
      int y = x / min_factor[x];
      if(min_factor[x] == min_factor[y]) return 0;
      x = y;
      pcnt++;
    }
    return pcnt % 2 == 0 ? 1 : -1;
  }
};

bool _miller_rabin_mr(unsigned long long n, const montgomery_reduction_64bit &mr){
  static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};
  static std::vector<unsigned long long> A{2, 325, 9375, 28178, 450775, 9780504, 1795265022};
  static std::vector<unsigned long long> B{2, 7, 61};
  if(n <= 1) return false;
  if(n <= 50){
    for(int l = n < 20 ? 0 : 8, r = n < 20 ? 8 : 15; l < r; l++) if(small_p[l] == n) return true;
    return false;
  }
  if(!(n & 1)) return false;
  unsigned long long d = n - 1;
  unsigned long long one = mr.one(), mone = mr.generate(n - 1);
  d >>= __builtin_ctzll(d);
  for(unsigned long long a : (n >> 32) ? A : B){
    if(a % n == 0) continue;
    unsigned long long d2s = d; // d * 2^s, 0 <= s <= (n - 1)が2で割れる回数
    unsigned long long y = mr.pow_safe(mr.generate(a), d);
    while(d2s != n - 1 && y != one && y != mone){
      y = mr.mul_safe(y, y);
      d2s <<= 1;
    }
    if(y != mone && !(d2s & 1)) return false;
  }
  return true;
}
bool miller_rabin_mr(unsigned long long n){
  if(n % 2 == 0) return n == 2 ? true : false;
  montgomery_reduction_64bit mr(n);
  return _miller_rabin_mr(n, mr);
}
// https://en.wikipedia.org/wiki/Binary_GCD_algorithm
unsigned long long binary_gcd(unsigned long long a, unsigned long long b){
  if(!a || !b) return !a ? b : a;
  int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b')
  a >>= __builtin_ctzll(a);
  do{
    // if b is odd
    // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even)
    // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd
    b >>= __builtin_ctzll(b); // make b odd
    if(a > b) std::swap(a, b);
    b -= a;
  }while(b); // gcd(a, 0) = a
  return a << shift; // [1]
}
unsigned long long generate_random_prime(unsigned long long min_n = 2, unsigned long long max_n = ~0ULL){
  std::random_device seed_gen;
  std::mt19937_64 engine(seed_gen());
  __uint128_t len = max_n - min_n + 1;
  // https://en.wikipedia.org/wiki/Prime_number_theorem
  while(true){
    unsigned long long a = engine() % len + min_n;
    if(miller_rabin_mr(a)){
      return a;
    }
  }
}
namespace rho_factorization{
  unsigned long long rho(unsigned long long n){
    static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};

    for(int sp : small_p) if(n % sp == 0) return sp; // n < 50

    montgomery_reduction_64bit mr(n);
    if(_miller_rabin_mr(n, mr)) return n;

    auto try_factorize = [n, mr](unsigned long long c){
      c = mr.generate(c);
      auto f = [mr, c](unsigned long long mx){
        return mr.add(mr.mul(mx, mx), c);
      };
      unsigned long long m = 1LL << ((64 - __builtin_clzll(n)) / 8);
      unsigned long long y = n, r = 1, q = 1;
      unsigned long long x, g, k, ys;
      do{
        x = y;
        y = mr.generate(y);
        for(int i = 0; i < r; i++) y = f(y);
        y = mr.reduce(y);

        k = 0;
        while(k < r && g == 1){
          q = mr.generate(q);
          y = mr.generate(y);
          ys = y;
          for(int i = 0; i < std::min(m, r - k); i++){
            y = f(y);
            unsigned long long z = mr.reduce(y);
            q = mr.mul(q, mr.generate(x > z ? x - z : z - x));
          }
          y = mr.reduce(y);
          g = binary_gcd(mr.reduce(q), n);
          k += m;
        }
        r <<= 1;
      }while(g == 1);
      if(g == n){
        do{
          ys = f(ys);
          unsigned long long z = mr.reduce(ys);
          g = binary_gcd(x > z ? x - z : z - x, n);
        }while(g == 1);
      }
      return g; // g == n when failure
    };
    unsigned long long c = 1, res = n;
    do{
      res = try_factorize(c);
      // c = generate_random_prime(2, n - 1);
      c = (c + 1) % n;
    }while(res == n);
    return res;
  }
  std::vector<unsigned long long> factorize(unsigned long long n){
    if(n <= 1) return {};
    unsigned long long x = rho(n);
    if(x == n) return {x};
    auto l = factorize(x);
    auto r = factorize(n / x);
    l.insert(l.end(), r.begin(), r.end());
    return l;
  }
  // {素数, 個数}の形で返す
  std::vector<std::pair<unsigned long long, int>> factorize2(unsigned long long n){
    auto p = factorize(n);
    sort(p.begin(), p.end());
    std::vector<std::pair<unsigned long long, int>> ret;
    for(int i : p){
      if(ret.empty() || ret.back().first != i) ret.push_back({i, 1});
      else ret.back().second++;
    }
    return ret;
  }
  // 素因数の集合(重複なし, ソート済)を返す
  std::vector<unsigned long long> prime_factor(unsigned long long n){
    auto p = factorize(n);
    std::sort(p.begin(), p.end());
    p.erase(std::unique(p.begin(), p.end()), p.end());
    return p;
  }
  // 10^18以下の高度合成数 897612484786617600の約数が103680個なので全列挙して良さそう
  std::vector<unsigned long long> divisor(unsigned long long n){
    auto p = factorize(n);
    std::sort(p.begin(), p.end());

    std::vector<std::pair<unsigned long long, int>> x;

    for(int i = 0; i < p.size(); i++){
      if(!i || p[i] != p[i - 1]) x.push_back({p[i], 1});
      else x.back().second++;
    }
    int sz = 1;
    for(auto [p_cur, cnt] : x) sz *= cnt + 1;

    std::vector<unsigned long long> res(sz);
    res[0] = 1;
    int r_prev = 1, r = 1;
    for(auto [p_cur, cnt] : x){
      unsigned long long ppow = 1;
      for(int c = 0; c < cnt; c++){
        ppow *= p_cur;
        for(int i = 0; i < r_prev; i++){
          res[r++] = res[i] * ppow;
        }
      }
      r_prev = r;
    }
    return res;
  }
  int mobius_function(long long x){
    auto P = rho_factorization::factorize(x);
    for(long long p : P) if((x / p) % p == 0) return 0;
    return P.size() % 2 == 0 ? 1 : -1;
  }
  unsigned long long totient_function(unsigned long long n){
    unsigned long long res = n;
    auto prims = rho_factorization::prime_factor(n);
    for(auto p : prims) res -= res / p;
    return res;
  }
};
// p: 素数
unsigned long long find_primitive_root(unsigned long long p){
  static std::random_device seed_gen;
  static std::mt19937_64 engine(seed_gen());
  //assert(miller_rabin_mr(p));
  auto primes = rho_factorization::prime_factor(p - 1);
  while(true){
    bool f = true;
    unsigned long long a = engine() % (p - 1) + 1;
    for(unsigned long long pk : primes){
      // a ^ (p - 1) / pk ≡ 1 (mod p) -> no
      if(mod_pow_mr(a, (p - 1) / pk, p) == 1){
        f = false;
        break;
      }
    }
    if(f) return a;
  }
}

struct bigint_prime_factor{
  int sq, max_x;
  std::vector<int> low;
  std::unordered_map<int, int> high;
  bigint_prime_factor(int max_x): sq(sqrt(max_x)), max_x(max_x), low(sq + 1, 0){
    // 篩が初期化済か
    assert(prime_sieve::min_factor.size() > max_x);
  }
  // O(log(x))
  // x^kを掛ける
  void mul(int x, int k = 1){
    assert(0 < x && x <= max_x);
    while(x > 1){
      int p = prime_sieve::min_factor[x];
      if(p <= sq) low[p] += k;
      else{
        auto [itr, f] = high.emplace(x, k);
        if(!f) itr->second += k;
      }
      x /= p;
    }
  }
  // O(log(x))
  // x^kで割る(割り切れない場合エラー)
  void div(int x, int k = 1){
    assert(0 < x && x <= max_x);
    while(x > 1){
      int p = prime_sieve::min_factor[x];
      if(p <= sq){
        assert(low[p] >= k);
        low[p] -= k;
      }else{
        auto itr = high.find(p);
        assert(itr != high.end() && itr->second >= k);
        itr->second -= k;
        if(itr->second == 0) high.erase(itr);
      }
      x /= p;
    }
  }
  // 素数pで何回割れるか, O(1)
  // pが素数でない場合0
  int k_divisible_prime(int p){
    if(p > max_x || !prime_sieve::is_prime(p)) return 0;
    if(p > sq){
      auto itr = high.find(p);
      return itr == high.end() ? 0 : itr->second;
    }
    return low[p];
  }
  // xで何回割れるか, O(log(x))
  // x = 1のときinf回割れる
  // @param 0 < x <= 篩の最大値
  int k_divisible(int x){
    assert(x > 0);
    static constexpr int inf = std::numeric_limits<int>::max();
    int ans = inf;
    for(auto [p, num] : prime_sieve::factorize(x)){
      if(p > sq){
        auto itr = high.find(p);
        if(itr == high.end()) return 0;
        ans = std::min(ans, itr->second / num);
      }else{
        ans = std::min(ans, low[p] / num);
      }
    }
    return ans;
  }
  // rで何回割り切れるか, O(sqrt(r.max_x)以下の素数 + rの素因数の種類)
  int k_divisible(const bigint_prime_factor &r){
    static constexpr int inf = std::numeric_limits<int>::max();
    int ans = inf;
    
    for(int i = 0; prime_sieve::primes[i] <= r.sq; i++){
      int p = prime_sieve::primes[i];
      if(!r.low[p]) continue;
      if(p <= sq){
        if(low[p] < r.low[p]) return 0;
        ans = std::min(ans, low[p] / r.low[p]);
      }else{
        auto itr = high.find(p);
        if(itr->second < r.low[p]) return 0;
        ans = std::min(ans, itr->second / r.low[p]);
      }
    }
    for(auto [p, num] : r.high){
      assert(num);
      if(p <= sq){
        if(low[p] < num) return 0;
        ans = std::min(ans, low[p] / num);
      }else{
        auto itr = high.find(p);
        if(itr->second < num) return 0;
        ans = std::min(ans, itr->second / num);
      }
    }
    return ans;
  }
};
// res[i] := v[i]の位数
template<typename mint>
std::vector<long long> multiplicative_order_many(const std::vector<mint> &v){
  int n = v.size();
  std::vector<long long> res(n, 1);
  for(auto [p, q] : rho_factorization::factorize2(mint::mod() - 1)){
    long long x = mint(p).pow(q).val(), y = (mint::mod() - 1) / x;
    for(int i = 0; i < n; i++){
      long long z = x;
      for(int j = 0; j < q; j++){
        z /= p;
        if(v[i].pow(y * z).val() != 1){
          res[i] *= z * p;
          break;
        }
      }
    }
  }
  return res;
}






//rank O(1), select O(lgN), memory 2Nbit
struct bitvector_memory{
  static constexpr int s = 32;
  int n;
  std::vector<int> RS{0}, table;
  bitvector_memory(): n(0){}
  bitvector_memory(const std::vector<bool> &S): n(S.size()){
    int pop = 0, m = 0;
    for(int i = 0, t = 0; i < n; i++, t++){
      if(S[i]) pop++, m += 1 << t;
      if(t == s - 1 || i == (n - 1)){
        RS.push_back(pop);
        table.push_back(m);
        t = -1, m = 0;
      }
    }
  }
  // bit[k]
  bool access(int k){
    assert(k < n);
    return (table[k / s] >> (k % s)) & 1;
  }
  // count 1, i < k
  int rank1(int k){
    assert(k <= n);
    int ret = RS[k / s];
    if(k % s) ret += __builtin_popcount(table[k / s] << (s - (k % s)));
    return ret;
  }
  // count 0, i < k
  int rank0(int k){
    return k - rank1(k);
  }
  // kth 1, 0-indexed
  int select1(int k){
    int L = 0, R = n + 1;
    while(R - L > 1){
      int mid = (L + R) >> 1;
      if(rank1(mid) > k) R = mid;
      else L = mid;
    }
    return L;
  }
  // kth 0, 0-indexed
  int select0(int k){
    int L = 0, R = n + 1;
    while(R - L > 1){
      int mid = (L + R) >> 1;
      if(rank0(mid) > k) R = mid;
      else L = mid;
    }
    return L;
  }
  // leftmost1, k < i
  int succ1(int k){
    return select1(rank1(k + 1));
  }
  // leftmost0, k < i
  int succ0(int k){
    return select0(rank0(k + 1));
  }
  // rightmost1, i < k
  int pred1(int k){
    int r = rank1(k);
    return r == 0 ? -1 : select1(r - 1);
  }
  // rightmost0, i < k
  int pred0(int k){
    int r = rank0(k);
    return r == 0 ? -1 : select0(r - 1);
  }
};
// rank O(1), select O(1), memory (2 + 32)Nbit
struct bitvector_fast_select{
  static constexpr int s = 32;
  int n;
  std::vector<int> pos1, pos0;
  std::vector<int> RS{0}, table;
  bitvector_fast_select(){}
  bitvector_fast_select(const std::vector<bool> &v): n(v.size()){
    for(int i = 0; i < n; i++){
      if(v[i]) pos1.push_back(i);
      else pos0.push_back(i);
    }
    int pop = 0, m = 0;
    for(int i = 0, t = 0; i < n; i++, t++){
      if(v[i]) pop++, m += 1 << t;
      if(t == s - 1 || i == (n - 1)){
        RS.push_back(pop);
        table.push_back(m);
        t = -1, m = 0;
      }
    }
  }
  // bit[k]
  bool access(int k){
    assert(k < n);
    return (table[k / s] >> (k % s)) & 1;
  }
  // count 1, i < k
  int rank1(int k){
    assert(k <= n);
    int ret = RS[k / s];
    if(k % s) ret += __builtin_popcount(table[k / s] << (s - (k % s)));
    return ret;
  }
  // count 0, i < k
  int rank0(int k){
    return k - rank1(k);
  }
  int select1(int k){
    if(k >= pos1.size()) return n;
    return pos1[k];
  }
  int select0(int k){
    if(k >= pos0.size()) return n;
    return pos0[k];
  }
  // leftmost1, k < i
  int succ1(int k){
    return select1(rank1(k + 1));
  }
  // leftmost0, k < i
  int succ0(int k){
    return select0(rank0(k + 1));
  }
  // rightmost1, i < k
  int pred1(int k){
    int r = rank1(k);
    return r == 0 ? -1 : select1(r - 1);
  }
  // rightmost0, i < k
  int pred0(int k){
    int r = rank0(k);
    return r == 0 ? -1 : select0(r - 1);
  }
};
/*
https://codeforces.com/contest/1746/my バグ
// rank O(1), select O(1), memory (2 + 4 + (0 ~ 4))N bit
struct bitvector{
private:
  constexpr static int s = 16, th_l = 255, th_m = 64, s2 = 32;
  int n;
  // rank
  std::vector<int> RS{0}, table;

  // select
  struct block{
    int t:2, idx:30;
    block(int t, int idx): t(t), idx(idx){}
  };
  std::array<std::vector<block>, 2> B;
  std::array<std::vector<std::array<int, s>>, 2> large;
  std::array<std::vector<std::array<uint8_t, s>>, 2> medium;
  std::array<std::vector<int>, 2> block_idx;

  static uint64_t flip(uint64_t x){
    constexpr static uint64_t y = 0xffffffffffffffffULL;
    return x ^ y;
  }
  static int find_kth_set_bit(uint64_t mask, int k){
    constexpr static uint64_t m1 = 0x5555555555555555ULL; // even bits
    constexpr static uint64_t m2 = 0x3333333333333333ULL; // even 2-bit groups
    constexpr static uint64_t m4 = 0x0f0f0f0f0f0f0f0fULL; // even nibbles
    constexpr static uint64_t m8 = 0x00ff00ff00ff00ffULL; // even bytes
    int t, i = k, r = 0;
    uint64_t c1 = mask;
    uint64_t c2 = c1 - ((c1 >> 1) & m1);
    uint64_t c4 = ((c2 >> 2) & m2) + (c2 & m2);
    uint64_t c8 = ((c4 >> 4) + c4) & m4;
    uint64_t c16 = ((c8 >> 8) + c8) & m8;
    uint64_t c32 = (c16 >> 16) + c16;
    int c64 = (int)(((c32 >> 32) + c32) & 0x7f);
    t = (c32    ) & 0x3f; if (i >= t) { r += 32; i -= t; }
    t = (c16>> r) & 0x1f; if (i >= t) { r += 16; i -= t; }
    t = (c8 >> r) & 0x0f; if (i >= t) { r +=  8; i -= t; }
    t = (c4 >> r) & 0x07; if (i >= t) { r +=  4; i -= t; }
    t = (c2 >> r) & 0x03; if (i >= t) { r +=  2; i -= t; }
    t = (c1 >> r) & 0x01; if (i >= t) { r +=  1;         }
    if (k >= c64) r = -1;
    return r;
  }
  // get[l, r], len <= 64
  uint64_t get64(int l, int r){
    int lb = l / s2, rb = r / s2;
    l %= s2, r %= s2;
    if(rb - lb == 2){
      uint64_t ans_l = table[lb] >> l;
      uint32_t ans_r = table[rb] << (s2 - 1 - r);
      return ans_l + (table[lb + 1] << (s2 - l)) + ((uint64_t)ans_r << (r - l + s2));
    }else if(rb - lb == 1){
      uint64_t ans_l = table[lb] >> l;
      uint32_t ans_r = table[rb] << (s2 - 1 - r);
      return ans_l + ((uint64_t)ans_r << (r - l));
    }else{
      assert(lb == rb);
      uint32_t ans = table[lb];
      ans <<= (s2 - 1 - r);
      ans >>= (s2 - (r - l + 1));
      return ans;
    }
  }
  int select(int k, bool b){
    int idx_l = k / s;
    if(idx_l >= block_idx[b].size()) return n;
    int ans = block_idx[b][idx_l], block_type = B[b][idx_l].t, idx_s = B[b][idx_l].idx;
    if(block_type == 2) ans += large[b][idx_s][k % s];
    else if(block_type == 1) ans += medium[b][idx_s][k % s];
    else{
      int L = block_idx[b][idx_l], R = B[b][idx_l].idx;
      uint64_t x = b ? get64(L, R) : flip(get64(L, R));
      int tmp = find_kth_set_bit(x, k % s);
      ans = (tmp == -1 || ans + tmp >= n ? n : ans + tmp);
    }
    return ans;
  }
public:
  bitvector(){}
  bitvector(const std::vector<bool> &v): n(v.size()){
    // rank
    int pop = 0, m = 0;
    for(int i = 0, t = 0; i < n; i++, t++){
      if(v[i]) pop++, m += 1 << t;
      if(t == s2 - 1 || i == (n - 1)){
        RS.push_back(pop);
        table.push_back(m);
        t = -1, m = 0;
      }
    }
    // select
    // 区間が[l, r]の0/1のブロックを作成
    auto make_block = [&](int l, int r, bool b){
      block_idx[b].push_back(l);
      if(r - l >= th_l){
        B[b].push_back(block(2, large[b].size()));
        large[b].push_back(std::array<int, s>());
        int k = 0;
        for(int i = l; i <= r; i++) if(v[i] == b) large[b].back()[k++] = i - l;
        while(k < s) large[b].back()[k++] = r - l + 1;
      }else if(r - l >= th_m){
        B[b].push_back(block(1, medium[b].size()));
        medium[b].push_back(std::array<uint8_t, s>());
        int k = 0;
        for(int i = l; i <= r; i++) if(v[i] == b) medium[b].back()[k++] = i - l;
        while(k < s) large[b].back()[k++] = r - l + 1;// [0, 255]
      }else{
        B[b].push_back(block(0, r));
      }
    };
    for(int b = 0; b < 2; b++){
      for(int i = 0, k = 0, l = 0; i < n; i++){
        if(v[i] == b){
          k++;
          if(k % s == 0) make_block(l, i, b), l = i + 1;
        }
        if(i == n - 1 && (block_idx[b].empty() || block_idx[b].back() != l)) make_block(l, i, b);
      }
    }
  }
  int size(){
    return n;
  }
  // bit[k]
  bool access(int k){
    assert(k < n);
    return (table[k / s2] >> (k % s2)) & 1;
  }
  // count 1, i < k
  int rank1(int k){
    assert(0 <= k && k <= n);
    int ret = RS[k / s2];
    if(k % s2) ret += __builtin_popcount(table[k / s2] << (s2 - (k % s2)));
    return ret;
  }
  // count 0, i < k
  int rank0(int k){
    return k - rank1(k);
  }
  int select1(int k){
    return select(k, 1);
  }
  int select0(int k){
    return select(k, 0);
  }
};
*/

template<int R>
struct bitvector_arbitrary_radix{
  static constexpr int s = 32, sdiv = 5, smod = 31;
  using Z = uint32_t;//s bit
  int N;
  std::vector<std::array<int, R>> B;
  std::vector<std::array<Z, R>> S;

  bitvector_arbitrary_radix(): N(0){}
  // init O(N + NR/s)
  bitvector_arbitrary_radix(const std::vector<uint8_t> &v): N(v.size()){
    int M = (N + s - 1) / s;
    std::array<int, R> pop;
    std::array<Z, R> pop_small;
    pop.fill(0);
    pop_small.fill(0);
    B.resize(M + 1, pop);
    S.resize(M, pop_small);
    for(int i = 0, t = 0, sz = 0; i < N; i++, t++){
      int x = v[i];
      assert(0 <= x && x < R);
      pop[x]++, pop_small[x] |= (Z(1) << t);
      if(t == s - 1 || i == N - 1){
        for(int j = 0; j < R; j++){
          if(j) pop[j] += pop[j - 1], pop_small[j] |= pop_small[j - 1];
          B[sz + 1][j] = pop[j] + B[sz][j];
          S[sz][j] = pop_small[j];
        }
        pop.fill(0);
        pop_small.fill(0);
        t = -1;
        sz++;
      }
    }
  }
  // r未満のcの数
  int rank(int r, int c){
    int rq = r >> sdiv, rm = r & smod;
    int ret = B[rq][c] - (c ? B[rq][c - 1] : 0);
    if(rm) ret += __builtin_popcount((S[rq][c] ^ (c ? S[rq][c - 1] : 0)) << (s - rm));
    return ret;
  }
  // r未満のc未満の数
  int rank_lower(int r, int c){
    if(c == 0) return 0;
    int rq = r >> sdiv, rm = r & smod;
    int ret = B[rq][--c];
    if(rm) ret += __builtin_popcount(S[rq][c] << (s - rm));
    return ret;
  }
};


struct wavelet_matrix{
private:
  using __bitvector = bitvector_memory;
  int n, h, inf;
  std::vector<__bitvector> bv;
  std::vector<int> bottom_idx;
  void build(std::vector<int> v){
    bv.resize(h);
    std::vector<bool> bits(n);
    std::vector<int> tmp(n), tmp_idx(n);
    std::iota(bottom_idx.begin(), bottom_idx.end(), 0);
    std::iota(tmp_idx.begin(), tmp_idx.end(), 0);
    std::queue<std::tuple<int, int, int>> q;
    if(h) q.push({h - 1, 0, n});
    while(!q.empty()){
      auto [d, l, r] = q.front();
      q.pop();
      int lidx = 0, ridx = 0;
      for(int i = l; i < r; i++){
        bool b = (v[i] >> d) & 1;
        bits[i] = b;
        if(b) tmp[ridx] = v[i], tmp_idx[ridx++] = bottom_idx[i];
        else v[l + lidx] = v[i], bottom_idx[l + lidx++] = bottom_idx[i];
      }
      for(int i = 0; i < ridx; i++){
        v[l + lidx + i] = tmp[i];
        bottom_idx[l + lidx + i] = tmp_idx[i];
      }
      if(d){
        int mid = l + lidx;
        if(mid > l) q.push({d - 1, l, mid});
        if(r > mid) q.push({d - 1, mid, r});
      }
      if(r == n) bv[d] = __bitvector(bits);
    }
  }
  // v[k]
  int __access(int k){
    assert(0 <= k && k < n);
    int L = 0, R = n, ret = 0;
    for(int i = h - 1; i >= 0; i--){
      int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R), k0 = bv[i].rank0(k);
      if(bv[i].access(k)){
        k += R0 - k0;
        L += R0 - L0;
        ret += 1 << i;
      }else{
        k -= (k - L) - (k0 - L0);
        R = L + R0 - L0;
      }
    }
    return ret;
  }
  // [0, r)のcの数
  int __rank(int r, int c){
    if(c < 0 || c >= inf) return 0;
    int L = 0, R = n;
    for(int i = h - 1; i >= 0 && r > L; i--){
      int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R) - L0, r0 = bv[i].rank0(r) - L0;
      if((c >> i) & 1){
        r += R0 - r0;
        L += R0;
      }else{
        r -= (r - L) - r0;
        R = L + R0;
      }
    }
    return r - L;
  }
  // k番目のc, ない場合は-1
  int __select(int k, int c){
    if(c < 0 || c >= inf) return -1;
    int L = 0, R = n;
    for(int i = h - 1; i >= 0; i--){
      int LR0 = bv[i].rank0(R) - bv[i].rank0(L);
      if((c >> i) & 1){
        L += LR0;
      }else{
        R = L + LR0;
      }
    }
    if(R - L <= k) return -1;
    return bottom_idx[L + k];
  }
  int __range_freq(int d, int l, int r, int L, int R, int s, int t, int S, int T){
    if(l == r || L == R || t <= S || T <= s) return 0;
    else if(s <= S && T <= t) return r - l;
    int L0 = bv[d].rank0(L), R0 = bv[d].rank0(R) - L0;
    int l0 = bv[d].rank0(l) - L0, r0 = bv[d].rank0(r) - L0;
    return __range_freq(d - 1, L + l0, L + r0, L, L + R0, s, t, S, (S + T) / 2) +
            __range_freq(d - 1, l + (R0 - l0), r + (R0 - r0), L + R0, R, s, t, (S + T) / 2, T);
  }
  std::pair<int, int> __range_kth_smallest(int l, int r, int k){
    if(l >= r || r - l <= k) return {-1, -1};
    int L = 0, R = n, ret = 0;
    for(int i = h - 1; i >= 0; i--){
      int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R) - L0;
      int l0 = bv[i].rank0(l) - L0, r0 = bv[i].rank0(r) - L0;
      if(r0 - l0 <= k){
        k -= r0 - l0;
        ret += 1 << i;
        l += R0 - l0, r += R0 - r0, L += R0;
      }else{
        l = L + l0, r = L + r0, R = L + R0;
      }
    }
    return {ret, bottom_idx[l + k]};
  }
  std::pair<int, int> __range_kth_smallest_super(int d, int l, int r, int L, int R, int s, int t, int S, int T, int &k){
    if(l == r || L == R || T <= s || t <= S) return {-1, -1};
    else if(s <= S && T <= t){
      if(r - l > k){
        for(int i = d; i >= 0; i--){
          int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R) - L0;
          int l0 = bv[i].rank0(l) - L0, r0 = bv[i].rank0(r) - L0;
          if(r0 - l0 <= k){
            k -= r0 - l0;
            l += R0 - l0, r += R0 - r0, L += R0;
            S = (S + T) / 2;
          }else{
            l = L + l0, r = L + r0, R = L + R0;
            T = (S + T) / 2;
          }
        }
        return {S, bottom_idx[l + k]};
      }
      k -= r - l;
      return {-1, -1};
    }
    int L0 = bv[d].rank0(L), R0 = bv[d].rank0(R) - L0;
    int l0 = bv[d].rank0(l) - L0, r0 = bv[d].rank0(r) - L0;
    auto p = __range_kth_smallest_super(d - 1, L + l0, L + r0, L, L + R0, s, t, S, (S + T) / 2, k);
    if(p.first != -1) return p;
    return __range_kth_smallest_super(d - 1, l + (R0 - l0), r + (R0 - r0), L + R0, R, s, t, (S + T) / 2, T, k);
  }
  std::pair<int, int> __range_kth_largest_super(int d, int l, int r, int L, int R, int s, int t, int S, int T, int &k){
    if(l == r || L == R || T <= s || t <= S) return {-1, -1};
    else if(s <= S && T <= t){
      if(r - l > k){
        for(int i = d; i >= 0; i--){
          int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R) - L0;
          int l0 = bv[i].rank0(l) - L0, r0 = bv[i].rank0(r) - L0;
          if((r - l) - (r0 - l0) <= k){
            k -= (r - l) - (r0 - l0);
            l = L + l0, r = L + r0, R = L + R0;
            T = (S + T) / 2;
          }else{
            l += R0 - l0, r += R0 - r0, L += R0;
            S = (S + T) / 2;
          }
        }
        return {S, bottom_idx[r - 1 - k]};
      }
      k -= r - l;
      return {-1, -1};
    }
    int L0 = bv[d].rank0(L), R0 = bv[d].rank0(R) - L0;
    int l0 = bv[d].rank0(l) - L0, r0 = bv[d].rank0(r) - L0;
    auto p =  __range_kth_largest_super(d - 1, l + (R0 - l0), r + (R0 - r0), L + R0, R, s, t, (S + T) / 2, T, k);
    if(p.first != -1) return p;
    return  __range_kth_largest_super(d - 1, L + l0, L + r0, L, L + R0, s, t, S, (S + T) / 2, k);
  }
  void __count_prefix(int l, int r, int x, std::vector<int> &ret){
    int L = 0, R = n;
    for(int i = h - 1; i >= 0; i--){
      int L0 = bv[i].rank0(L), R0 = bv[i].rank0(R) - L0;
      int l0 = bv[i].rank0(l) - L0, r0 = bv[i].rank0(r) - L0;
      if((x >> i) & 1){
        ret[h - 1 - i] = r0 - l0;
        l += R0 - l0, r += R0 - r0, L += R0;
      }else{
        ret[h - 1 - i] = (r - l) - (r0 - l0);
        l = L + l0, r = L + r0, R = L + R0;
      }
    }
    ret[h] = r - l;
  }
public:
  wavelet_matrix(): n(0){}
  // 値が[0, inf)
  wavelet_matrix(const std::vector<int> &v, int inf): n(v.size()), inf(inf), bottom_idx(n){
    assert(inf >= 0);
    h = 0;
    while((1 << h) < inf) h++;
    build(v);
  }
  // v[k]
  int access(int k){
    return __access(k);
  }
  // [0, r)のcの数
  int rank(int r, int c){
    return __rank(r, c);
  }
  // k番目のc, ない場合は-1
  int select(int k, int c){
    return __select(k, c);
  }
  // k以降(k含む)のc, 無い場合は-1
  int find_next(int k, int c){
    if(c < 0 || c >= inf) return -1;
    return __select(__rank(k, c), c);
  }
  // k以前(k含む)のc, 無い場合は-1
  int find_prev(int k, int c){
    if(c < 0 || c >= inf) return -1;
    int r = __rank(k + 1, c);
    if(r == 0) return -1;
    return __select(r - 1, c);
  }
  // [l, r)の[s, t)の数
  int range_freq(int l, int r, int s, int t){
    assert(0 <= l && r <= n);
    assert(0 <= s && t <= inf);
    if(l >= r || s >= t) return 0;
    return __range_freq(h - 1, l, r, 0, n, s, t, 0, 1 << h);
  }
  // [l, r)でk番目に小さい要素とインデックス(ない場合は-1)
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<int, int> range_kth_smallest(int l, int r, int k){
    return __range_kth_smallest(l, r, k);
  }
  // [l, r)でk番目に大きい要素とインデックス(ない場合は-1)
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<int, int> range_kth_largest(int l, int r, int k){
    if(r - l <= k) return {-1, -1};
    return __range_kth_smallest(l, r, r - l - 1 - k);
  }
  // [l, r)で値が[s, t)の要素でk番目に小さい
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<int, int> range_kth_smallest_super(int l, int r, int s, int t, int k){
    return __range_kth_smallest_super(h - 1, l, r, 0, n, s, t, 0, 1 << h, k);
  }
  // [l, r)で値が[s, t)の要素でk番目に大きい
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<int, int> range_kth_largest_super(int l, int r, int s, int t, int k){
    return __range_kth_largest_super(h - 1, l, r, 0, n, s, t, 0, 1 << h, k);
  }
  // 区間[l, r)のx以上の最小要素(ない場合は-1)
  int range_lower_bound(int l, int r, int x){
    assert(0 <= l && r <= n);
    assert(0 <= x && x < inf);
    int cnt = range_freq(l, r, 0, x);
    return range_kth_smallest(l, r, cnt).first;
  }
  // 区間[l, r)のx以下の最大要素(ない場合は-1)
  int range_lower_bound_rev(int l, int r, int x){
    assert(0 <= l && r <= n);
    assert(0 <= x && x < inf);
    int cnt = range_freq(l, r, 0, x + 1);
    if(cnt == 0) return -1;
    return range_kth_smallest(l, r, cnt - 1).first;
  }
  // [l, r)で値が[s, t)の要素でインデックス順にk番目, ない場合は-1
  int range_select(int l, int r, int s, int t, int k){
    if(range_freq(l, r, s, t) <= k) return -1;
    int L = l;
    while(r - l > 1){
      int mid_r = (l + r) / 2;
      if(range_freq(L, mid_r, s, t) > k) r = mid_r;
      else l = mid_r;
    }
    return l;
  }
  // ret[i] := [l, r)でh-bitの2進数で見たときxとのlcpがちょうどiの要素の数
  std::vector<int> count_prefix(int l, int r, int x){
    std::vector<int> ret(h + 1, 0);
    __count_prefix(l, r, x, ret);
    return ret;
  }
};

template<typename T>
struct compressed_wavelet_matrix{
private:
  std::vector<T> rev;
  wavelet_matrix wm;
  int lb(T c){
    return std::lower_bound(rev.begin(), rev.end(), c) - rev.begin();
  }
public:
  compressed_wavelet_matrix(){}
  compressed_wavelet_matrix(const std::vector<T> &_v){
    int n = _v.size();
    std::vector<int> v(n);
    std::vector<std::pair<T, int>> tmp(n);
    for(int i = 0; i < n; i++) tmp[i].first = _v[i], tmp[i].second = i;
    std::sort(tmp.begin(), tmp.end());
    for(int i = 0; i < n; i++){
      if(i == 0 || tmp[i].first != tmp[i - 1].first) rev.push_back(tmp[i].first);
      v[tmp[i].second] = (int)rev.size() - 1;
    }
    tmp.clear();
    wm = wavelet_matrix(v, rev.size());
  }
  // V[k]
  T access(int k){
    return rev[wm.access(k)];
  }
  // インデックスがr未満のcの数
  int rank(int r, T c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return 0;
    return wm.rank(r, idx);
  }
  // k番目のc, 無い場合は-1
  int select(int k, T c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return -1;
    return wm.select(k, idx);
  }
  // k以降(k含む)のc, 無い場合は-1
  int find_next(int k, T c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return -1;
    return wm.find_next(k, idx);
  }
  // k以前(k含む)のc, 無い場合は-1
  int find_prev(int k, T c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return -1;
    return wm.find_prev(k, idx);
  }
  // [l, r)の[s, t)の個数
  int range_freq(int l, int r, T s, T t){
    return wm.range_freq(l, r, lb(s), lb(t));
  }
  // [l, r)でk番目に小さい要素と場所, ない場合は-1
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<T, int> range_kth_smallest(int l, int r, int k){
    auto p = wm.range_kth_smallest(l, r, k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // [l, r)でk番目に大きい要素と場所, ない場合は-1
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<T, int> range_kth_largest(int l, int r, int k){
    auto p = wm.range_kth_largest(l, r, k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // [l, r)の[s, t)の中でk番目に小さい要素と場所, ない場合は-1
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<T, int> range_kth_smallest_super(int l, int r, T s, T t, int k){
    auto p = wm.range_kth_smallest_super(l, r, lb(s), lb(t), k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // [l, r)の[s, t)の中でk番目に大きい要素と場所, ない場合は-1
  // 値が同じ場合インデックスが小さいものを小さいとする
  std::pair<T, int> range_kth_largest_super(int l, int r, T s, T t, int k){
    auto p = wm.range_kth_largest_super(l, r, lb(s), lb(t), k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // 区間[l, r)のx以上の最小要素(ない場合は-1)
  T range_lower_bound(int l, int r, T x){
    int xi = lb(x);
    if(xi == rev.size()) return -1;
    int ret = wm.range_lower_bound(l, r, xi);
    return ret == -1 ? -1 : rev[ret];
  }
  // 区間[l, r)のx以下の最大要素(ない場合は-1)
  T range_lower_bound_rev(int l, int r, T x){
    int xi = std::upper_bound(rev.begin(), rev.end(), x) - rev.begin();
    if(xi == 0) return -1;
    int ret = wm.range_lower_bound_rev(l, r, xi - 1);
    return ret == -1 ? -1 : rev[ret];
  }
  // [l, r)で値が[s, t)の要素でインデックス順にk番目, ない場合は-1
  int range_select(int l, int r, T s, T t, int k){
    return wm.range_select(l, r, lb(s), lb(t), k);
  }
};

template<int R>
struct wavelet_matrix_arbitrary_radix{
private:
  static constexpr int bitlen(uint64_t x){
    if(!x) return 0;
    return 64 - __builtin_clzll(x);
  }
  static constexpr int Rdiv = bitlen(R) - 1, Rmod = R - 1;
  int n, h, inf;
  std::vector<bitvector_arbitrary_radix<R>> bv;
  std::vector<int> bottom_idx;
  void build(const std::vector<int> &v){
    bv.resize(h);
    bottom_idx.resize(n);
    std::queue<std::tuple<int, int, int>> q;
    if(h) q.push({h - 1, 0, n});
    std::vector<std::pair<int, int>> cur(n);
    std::array<std::vector<std::pair<int, int>>, R> next;
    std::vector<uint8_t> bits(n);
    for(int i = 0; i < n; i++) cur[i] = {v[i], i};
    while(!q.empty()){
      auto [d, l, r] = q.front();
      q.pop();
      for(int i = l; i < r; i++){
        int dir = (cur[i].first >> (d * Rdiv)) & Rmod;
        bits[i] = dir;
        next[dir].push_back({cur[i].first, cur[i].second});
      }
      for(int i = 0, j = l; i < R; i++){
        std::copy(next[i].begin(), next[i].end(), cur.begin() + j);
        int k = j + next[i].size();
        if(d && j < k) q.push({d - 1, j, k});
        j = k;
        next[i].clear();
      }
      if(r == n) bv[d] = bitvector_arbitrary_radix<R>(bits);
    }
    for(int i = 0; i < n; i++) bottom_idx[i] = cur[i].second;
  }
  int __rank(int r, int c){
    int l = 0, _L = 0, _R = n;
    for(int d = h - 1, shift = d * Rdiv; r > l && d >= 0; d--, shift -= Rdiv){
      int dir = (c >> shift) & Rmod;
      int Ldir = bv[d].rank_lower(_L, dir);
      int Ldir2 = bv[d].rank(_L, dir);
      int Rdir = bv[d].rank_lower(_R, dir);
      _L += Rdir - Ldir;
      _R = _L + bv[d].rank(_R, dir) - Ldir2;
      l = _L + bv[d].rank(l, dir) - Ldir2;
      r = _L + bv[d].rank(r, dir) - Ldir2;
    }
    return r - l;
  }
  int __select(int k, int c){
    int _L = 0, _R = n;
    for(int d = h - 1, shift = d * Rdiv; d >= 0; d--, shift -= Rdiv){
      int dir = (c >> shift) & Rmod;
      int Ldir = bv[d].rank_lower(_L, dir), Ldir2 = bv[d].rank(_L, dir), Rdir = bv[d].rank_lower(_R, dir);
      _L += Rdir - Ldir, _R = _L + bv[d].rank(_R, dir) - Ldir2;
      if(_L + k >= _R) return -1;
    }
    return bottom_idx[_L + k];
  }
  int __range_freq(int d, int l, int r, int _L, int _R, int s, int t, int S, int T){
    if(l >= r || s >= t || t <= S || T <= s) return 0;
    else if(s <= S && T <= t) return r - l;
    if(s < S) s = S;
    if(t > T) t = T;
    int shift = d * Rdiv;
    int sb = (s - S) >> shift, tb = (t - S) >> shift; // [0, R]
    if(sb == tb){
      int Lsb = bv[d].rank_lower(_L, sb), Lsb2 = bv[d].rank(_L, sb), Rsb = bv[d].rank_lower(_R, sb);
      int Lnext = _L + Rsb - Lsb, Rnext = Lnext + bv[d].rank(_R, sb) - Lsb2;
      int lnext = Lnext + bv[d].rank(l, sb) - Lsb2, rnext = Lnext + bv[d].rank(r, sb) - Lsb2;
      return __range_freq(d - 1, lnext, rnext, Lnext, Rnext, s, t, S + (sb << shift), S + ((sb + 1) << shift));
    }
    // f(tb) - f(sb) + [tb] - [sb]
    int ans = 0;
    ans += bv[d].rank_lower(r, tb) - bv[d].rank_lower(l, tb);
    ans -= bv[d].rank_lower(r, sb) - bv[d].rank_lower(l, sb);
    // [sb << d, s)
    if((sb << shift) < s){
      int Lsb = bv[d].rank_lower(_L, sb), Lsb2 = bv[d].rank(_L, sb), Rsb = bv[d].rank_lower(_R, sb);
      int Lnext = _L + Rsb - Lsb, Rnext = Lnext + bv[d].rank(_R, sb) - Lsb2;
      int lnext = Lnext + bv[d].rank(l, sb) - Lsb2, rnext = Lnext + bv[d].rank(r, sb) - Lsb2;
      ans -= __range_freq(d - 1, lnext, rnext, Lnext, Rnext, S + (sb << shift), s, S + (sb << shift), S + ((sb + 1) << shift));
    }
    // [tb << d, t)
    if((tb << shift) < t){
      int Ltb = bv[d].rank_lower(_L, tb), Ltb2 = bv[d].rank(_L, tb), Rtb = bv[d].rank_lower(_R, tb);
      int Lnext = _L + Rtb - Ltb, Rnext = Lnext + bv[d].rank(_R, tb) - Ltb2;
      int lnext = Lnext + bv[d].rank(l, tb) - Ltb2, rnext = Lnext + bv[d].rank(r, tb) - Ltb2;
      ans += __range_freq(d - 1, lnext, rnext, Lnext, Rnext, S + (tb << shift), t, S + (tb << shift), S + ((tb + 1) << shift));
    }
    return ans;
  }
  std::pair<int, int> __range_kth_smallest(int l, int r, int k){
    int _L = 0, _R = n, ans = 0;
    for(int d = h - 1, shift = d * Rdiv; d >= 0; d--, shift -= Rdiv){
      int _l = -1, _r = R - 1;
      while(_r - _l > 1){
        int mid = (_l + _r) >> 1;
        (bv[d].rank_lower(r, mid + 1) - bv[d].rank_lower(l, mid + 1) > k ? _r : _l) = mid;
      }
      int dir = _r;
      k -= bv[d].rank_lower(r, dir) - bv[d].rank_lower(l, dir);
      ans += dir << shift;
      int Ldir = bv[d].rank_lower(_L, dir), Ldir2 = bv[d].rank(_L, dir), Rdir = bv[d].rank_lower(_R, dir);
      _L += Rdir - Ldir, _R = _L + bv[d].rank(_R, dir) - Ldir2;
      l = _L + bv[d].rank(l, dir) - Ldir2, r = _L + bv[d].rank(r, dir) - Ldir2;
    }
    return {ans, bottom_idx[l + k]};
  }
public:
  wavelet_matrix_arbitrary_radix(){}
  wavelet_matrix_arbitrary_radix(const std::vector<int> &v, int inf): n(v.size()), inf(inf){
    // 高速化のためRは2べき
    static_assert((1 << Rdiv) == R);
    h = 0;
    long long k = 1;
    while(k < inf) h++, k <<= Rdiv;
    build(v);
  }
  // r未満のcの数
  int rank(int r, int c){
    assert(0 <= r && r <= n);
    if(c < 0 || c >= inf) return 0;
    return __rank(r, c);
  }
  // k番目のcのインデックス, ない場合は-1
  int select(int k, int c){
    assert(0 <= k);
    if(c < 0 || c >= inf) return -1;
    return __select(k, c);
  }
  // [l, r)の[s, t)の数
  int range_freq(int l, int r, int s, int t){
    assert(0 <= l && r <= n);
    assert(0 <= s && t <= inf);
    if(l >= r || s >= t) return 0;
    return __range_freq(h - 1, l, r, 0, n, s, t, 0, 1 << (h * Rdiv));
  }
  // 区間[l, r)でk番目に小さい要素とそのインデックス, ない場合は-1
  // 値が同じ場合インデックスの昇順
  std::pair<int, int> range_kth_smallest(int l, int r, int k){
    if(r - l <= k) return {-1, -1};
    return __range_kth_smallest(l, r, k);
  }
  // 区間[l, r)でk番目に大きい要素とそのインデックス, ない場合は-1
  // 値が同じ場合インデックスの降順
  std::pair<int, int> range_kth_largest(int l, int r, int k){
    if(r - l <= k) return {-1, -1};
    return __range_kth_smallest(l, r, r - l - 1 - k);
  }
  // [l, r)で値が[s, t)の要素でインデックス順にk番目, ない場合は-1
  int range_select(int l, int r, int s, int t, int k){
    if(range_freq(l, r, s, t) <= k) return -1;
    int L = l;
    while(r - l > 1){
      int mid_r = (l + r) / 2;
      if(range_freq(L, mid_r, s, t) > k) r = mid_r;
      else l = mid_r;
    }
    return l;
  }
};

template<int R, typename Val>
struct compressed_wavelet_matrix_arbitrary_radix{
private:
  int N;
  wavelet_matrix_arbitrary_radix<R> wm;
  std::vector<Val> rev;
  int lb(Val c){return std::lower_bound(rev.begin(), rev.end(), c) - rev.begin();}
public:
  compressed_wavelet_matrix_arbitrary_radix(){}
  compressed_wavelet_matrix_arbitrary_radix(const std::vector<Val> &_v): N(_v.size()){
    std::vector<int> v(N);
    std::vector<std::pair<Val, int>> tmp(N);
    for(int i = 0; i < N; i++) tmp[i] = {_v[i], i};
    std::sort(tmp.begin(), tmp.end());
    for(int i = 0; i < N; i++){
      if(i == 0 || tmp[i].first != tmp[i - 1].first) rev.push_back(tmp[i].first);
      v[tmp[i].second] = (int)rev.size() - 1;
    }
    tmp.clear();
    wm = wavelet_matrix_arbitrary_radix<R>(v, rev.size());
  }
  // val[k]
  Val access(int k){
    return rev[wm.access(k)];
  }
  // [0, r)のc
  int rank(int r, Val c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return 0;
    return wm.rank(r, idx);
  }
  // k番目のcのインデックス, ない場合は-1
  int select(int k, Val c){
    int idx = lb(c);
    if(idx == rev.size() || rev[idx] != c) return -1;
    return wm.select(k, idx);
  }
  // [l, r)の[s, t)の数
  int range_freq(int l, int r, Val s, Val t){
    return wm.range_freq(l, r, lb(s), lb(t));
  }
  // 区間[l, r)でk番目に小さい要素とそのインデックス, ない場合は-1
  // 値が同じ場合インデックスの昇順
  std::pair<Val, int> range_kth_smallest(int l, int r, int k){
    auto p = wm.range_kth_smallest(l, r, k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // 区間[l, r)でk番目に大きい要素とそのインデックス, ない場合は-1
  // 値が同じ場合インデックスの降順
  std::pair<Val, int> range_kth_largest(int l, int r, int k){
    auto p = wm.range_kth_largest(l, r, k);
    if(p.first == -1) return {-1, -1};
    return {rev[p.first], p.second};
  }
  // [l, r)で値が[s, t)の要素でインデックス順にk番目, ない場合は-1
  int range_select(int l, int r, Val s, Val t, int k){
    return wm.range_select(l, r, lb(s), lb(t), k);
  }
};


int main(){
  prime_sieve::init(200001);
  io_init();
  int n;
  std::cin >> n;
  vector<pair<int, int>> v;
  range(i, 0, n){
    int a, b;
    //a = 166320;
    //b = 1000000000;
    std::cin >> a >> b;
    v.push_back({a, b});
  }
  sort(allof(v));

  vector<int> mxb(200001, 0);
  range(i, 0, n){
    auto [a, b] = v[i];
    mxb[a] = max(mxb[a], b);
  }
  int lower = 0;
  range(i, 1, n){
    if(v[i].first == v[i - 1].first){
      lower = max(lower, min(v[i].second, v[i - 1].second));
    }
  }
  // x | ai 
  // x | aj
  
  // ci := ai / g
  // cj := aj / g
  
  // min(floor(bi / cj), floor(bj / ci))
  

  // gを小さく取ってしまう -> cが大きくなる -> 答えが小さくなるため問題ない

  // S[i] := iの倍数の集合
  vector<vector<pair<int, int>>> S(200001);
  range(i, 0, n){
    auto [a, b] = v[i];
    for(int d : prime_sieve::divisor(v[i].first)){
      S[d].push_back({v[i].first / d, v[i].second});
      if(a != d) lower = max(lower, min(b, mxb[d] / (a / d)));
    }
  }
  int ans = lower;
  for(int i = 200000; i > 0; i--){
    if(S[i].size() <= 10){
      int sz = S[i].size();
      range(j, 0, sz){
        auto [ci, bi] = S[i][j];
        range(k, j + 1, sz){
          auto [cj, bj] = S[i][k];
          int x = min(bi / cj, bj / ci);
          ans = max(ans, x);
        }
      }
    }else{
      int m = S[i].size();
      sort(allof(S[i]));
      vector<int> B(m);
      range(j, 0, m) B[j] = S[i][j].second;
      compressed_wavelet_matrix<int> wm(B);
      
      int l = ans, r = 1000000001;
      while(r - l > 1){
        int x = (l + r) / 2;
        bool f = false;
        range(j, 0, S[i].size()){
          auto [c, b] = S[i][j];
          int ridx = lower_bound(allof(S[i]), pair<int, int>{b / x + 2, 0}) - S[i].begin(); // [0, r)
          int y = 0;
          if((ll)x * c <= 1000000000) y = wm.range_freq(0, ridx, x * c, 1000000000);
          y -= (b >= (ll)c * x ? 1 : 0);
          if(y > 0){
            f = true;
            break;
          }
        }
        if(f) l = x;
        else r = x;
      }
      ans = max(ans, l);
    }
  }
  std::cout << ans << '\n';
}
0