結果

問題 No.2720 Sum of Subarray of Subsequence of...
ユーザー 👑 binap
提出日時 2024-04-06 20:40:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 494 ms / 4,000 ms
コード長 22,374 bytes
コンパイル時間 5,402 ms
コンパイル使用メモリ 274,688 KB
最終ジャッジ日時 2025-02-20 22:38:39
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return
    os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");
    return os;}
template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}
using mint = modint998244353;
// thanks for Nyaan-san's library
// https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
template <typename mint>
struct NTT {
static constexpr uint32_t get_pr() {
uint32_t _mod = mint::mod();
using u64 = uint64_t;
u64 ds[32] = {};
int idx = 0;
u64 m = _mod - 1;
for (u64 i = 2; i * i <= m; ++i) {
if (m % i == 0) {
ds[idx++] = i;
while (m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
uint32_t _pr = 2;
while (1) {
int flg = 1;
for (int i = 0; i < idx; ++i) {
u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
while (b) {
if (b & 1) r = r * a % _mod;
a = a * a % _mod;
b >>= 1;
}
if (r == 1) {
flg = 0;
break;
}
}
if (flg == 1) break;
++_pr;
}
return _pr;
};
static constexpr uint32_t mod = mint::mod();
static constexpr uint32_t pr = get_pr();
static constexpr int level = __builtin_ctzll(mod - 1);
mint dw[level], dy[level];
void setwy(int k) {
mint w[level], y[level];
w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
y[k - 1] = w[k - 1].inv();
for (int i = k - 2; i > 0; --i)
w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
for (int i = 3; i < k; ++i) {
dw[i] = dw[i - 1] * y[i - 2] * w[i];
dy[i] = dy[i - 1] * w[i - 2] * y[i];
}
}
NTT() { setwy(level); }
void fft4(vector<mint> &a, int k) {
if ((int)a.size() <= 1) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
if (k & 1) {
int v = 1 << (k - 1);
for (int j = 0; j < v; ++j) {
mint ajv = a[j + v];
a[j + v] = a[j] - ajv;
a[j] += ajv;
}
}
int u = 1 << (2 + (k & 1));
int v = 1 << (k - 2 - (k & 1));
mint one = mint(1);
mint imag = dw[1];
while (v) {
// jh = 0
{
int j0 = 0;
int j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
mint t0p2 = t0 + t2, t1p3 = t1 + t3;
mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
}
}
// jh >= 1
mint ww = one, xx = one * dw[2], wx = one;
for (int jh = 4; jh < u;) {
ww = xx * xx, wx = ww * xx;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for (; j0 < je; ++j0, ++j2) {
mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
t3 = a[j2 + v] * wx;
mint t0p2 = t0 + t2, t1p3 = t1 + t3;
mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
}
xx *= dw[__builtin_ctzll((jh += 4))];
}
u <<= 2;
v >>= 2;
}
}
void ifft4(vector<mint> &a, int k) {
if ((int)a.size() <= 1) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
int u = 1 << (k - 2);
int v = 1;
mint one = mint(1);
mint imag = dy[1];
while (u) {
// jh = 0
{
int j0 = 0;
int j1 = v;
int j2 = v + v;
int j3 = j2 + v;
for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
}
}
// jh >= 1
mint ww = one, xx = one * dy[2], yy = one;
u <<= 2;
for (int jh = 4; jh < u;) {
ww = xx * xx, yy = xx * imag;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for (; j0 < je; ++j0, ++j2) {
mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
}
xx *= dy[__builtin_ctzll(jh += 4)];
}
u >>= 4;
v <<= 2;
}
if (k & 1) {
u = 1 << (k - 1);
for (int j = 0; j < u; ++j) {
mint ajv = a[j] - a[j + u];
a[j] += a[j + u];
a[j + u] = ajv;
}
}
}
void ntt(vector<mint> &a) {
if ((int)a.size() <= 1) return;
fft4(a, __builtin_ctz(a.size()));
}
void intt(vector<mint> &a) {
if ((int)a.size() <= 1) return;
ifft4(a, __builtin_ctz(a.size()));
mint iv = mint(a.size()).inv();
for (auto &x : a) x *= iv;
}
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
int l = a.size() + b.size() - 1;
if (min<int>(a.size(), b.size()) <= 40) {
vector<mint> s(l);
for (int i = 0; i < (int)a.size(); ++i)
for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
return s;
}
int k = 2, M = 4;
while (M < l) M <<= 1, ++k;
setwy(k);
vector<mint> s(M);
for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
fft4(s, k);
if (a.size() == b.size() && a == b) {
for (int i = 0; i < M; ++i) s[i] *= s[i];
} else {
vector<mint> t(M);
for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
fft4(t, k);
for (int i = 0; i < M; ++i) s[i] *= t[i];
}
ifft4(s, k);
s.resize(l);
mint invm = mint(M).inv();
for (int i = 0; i < l; ++i) s[i] *= invm;
return s;
}
void ntt_doubling(vector<mint> &a) {
int M = (int)a.size();
auto b = a;
intt(b);
mint r = 1, zeta = mint(pr).pow((mint::mod() - 1) / (M << 1));
for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
ntt(b);
copy(begin(b), end(b), back_inserter(a));
}
};
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.back().inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
// sz sz 0
FPS pre(int sz) const {
FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
if ((int)ret.size() < sz) ret.resize(sz);
return ret;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert(!(*this).empty() && (*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_fft();
FPS &operator*=(const FPS &r);
void ntt();
void intt();
void ntt_doubling();
static int ntt_pr();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}
template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
const FormalPowerSeries<mint>& r) {
if (this->empty() || r.empty()) {
this->clear();
return *this;
}
set_fft();
auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}
template <typename mint>
void FormalPowerSeries<mint>::ntt() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}
template <typename mint>
void FormalPowerSeries<mint>::intt() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}
template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
set_fft();
static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}
template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
set_fft();
return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}
template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
assert((*this)[0] != mint(0));
if (deg == -1) deg = (int)this->size();
FormalPowerSeries<mint> res(deg);
res[0] = {mint(1) / (*this)[0]};
for (int d = 1; d < deg; d <<= 1) {
FormalPowerSeries<mint> f(2 * d), g(2 * d);
for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
for (int j = 0; j < d; j++) g[j] = res[j];
f.ntt();
g.ntt();
for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
f.intt();
for (int j = 0; j < d; j++) f[j] = 0;
f.ntt();
for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
f.intt();
for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
}
return res.pre(deg);
}
template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
using fps = FormalPowerSeries<mint>;
assert((*this).size() == 0 || (*this)[0] == mint(0));
if (deg == -1) deg = this->size();
fps inv;
inv.reserve(deg + 1);
inv.push_back(mint(0));
inv.push_back(mint(1));
auto inplace_integral = [&](fps& F) -> void {
const int n = (int)F.size();
auto mod = mint::mod();
while ((int)inv.size() <= n) {
int i = inv.size();
inv.push_back((-inv[mod % i]) * (mod / i));
}
F.insert(begin(F), mint(0));
for (int i = 1; i <= n; i++) F[i] *= inv[i];
};
auto inplace_diff = [](fps& F) -> void {
if (F.empty()) return;
F.erase(begin(F));
mint coeff = 1, one = 1;
for (int i = 0; i < (int)F.size(); i++) {
F[i] *= coeff;
coeff += one;
}
};
fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
for (int m = 2; m < deg; m *= 2) {
auto y = b;
y.resize(2 * m);
y.ntt();
z1 = z2;
fps z(m);
for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
z.intt();
fill(begin(z), begin(z) + m / 2, mint(0));
z.ntt();
for (int i = 0; i < m; ++i) z[i] *= -z1[i];
z.intt();
c.insert(end(c), begin(z) + m / 2, end(z));
z2 = c;
z2.resize(2 * m);
z2.ntt();
fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
x.resize(m);
inplace_diff(x);
x.push_back(mint(0));
x.ntt();
for (int i = 0; i < m; ++i) x[i] *= y[i];
x.intt();
x -= b.diff();
x.resize(2 * m);
for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
x.ntt();
for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
x.intt();
x.pop_back();
inplace_integral(x);
for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
fill(begin(x), begin(x) + m, mint(0));
x.ntt();
for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
x.intt();
b.insert(end(b), begin(x) + m, end(x));
}
return fps{begin(b), begin(b) + deg};
}
// [x^n] f(x)^i g(x) i=0,1,...,m
// n = (f ) - 1
template <typename mint>
FormalPowerSeries<mint> pow_enumerate(FormalPowerSeries<mint> f,
FormalPowerSeries<mint> g = {1},
int m = -1) {
using fps = FormalPowerSeries<mint>;
int n = f.size() - 1, k = 1;
g.resize(n + 1);
if (m == -1) m = n;
int h = 1;
while (h < n + 1) h *= 2;
fps P((n + 1) * k), Q((n + 1) * k), nP, nQ, buf, buf2;
for (int i = 0; i <= n; i++) P[i * k + 0] = g[i];
for (int i = 0; i <= n; i++) Q[i * k + 0] = -f[i];
Q[0] += 1;
while (n) {
mint inv2 = mint{2}.inv();
mint w = mint{fps::ntt_pr()}.pow((mint::mod() - 1) / (2 * k));
mint iw = w.inv();
buf2.resize(k);
auto ntt_doubling = [&]() {
copy(begin(buf), end(buf), begin(buf2));
buf2.intt();
mint c = 1;
for (int i = 0; i < k; i++) buf2[i] *= c, c *= w;
buf2.ntt();
copy(begin(buf2), end(buf2), back_inserter(buf));
};
nP.clear(), nQ.clear();
for (int i = 0; i <= n; i++) {
buf.resize(k);
copy(begin(P) + i * k, begin(P) + (i + 1) * k, begin(buf));
ntt_doubling();
copy(begin(buf), end(buf), back_inserter(nP));
buf.resize(k);
copy(begin(Q) + i * k, begin(Q) + (i + 1) * k, begin(buf));
if (i == 0) {
for (int j = 0; j < k; j++) buf[j] -= 1;
ntt_doubling();
for (int j = 0; j < k; j++) buf[j] += 1;
for (int j = 0; j < k; j++) buf[k + j] -= 1;
} else {
ntt_doubling();
}
copy(begin(buf), end(buf), back_inserter(nQ));
}
nP.resize(2 * h * 2 * k);
nQ.resize(2 * h * 2 * k);
fps p(2 * h), q(2 * h);
w = mint{fps::ntt_pr()}.pow((mint::mod() - 1) / (2 * h));
iw = w.inv();
vector<int> btr;
if (n % 2) {
btr.resize(h);
for (int i = 0, lg = __builtin_ctz(h); i < h; i++) {
btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (lg - 1));
}
}
for (int j = 0; j < 2 * k; j++) {
p.assign(2 * h, 0);
q.assign(2 * h, 0);
for (int i = 0; i < h; i++) {
p[i] = nP[i * 2 * k + j], q[i] = nQ[i * 2 * k + j];
}
p.ntt(), q.ntt();
for (int i = 0; i < 2 * h; i += 2) swap(q[i], q[i + 1]);
for (int i = 0; i < 2 * h; i++) p[i] *= q[i];
for (int i = 0; i < h; i++) q[i] = q[i * 2] * q[i * 2 + 1];
if (n % 2 == 0) {
for (int i = 0; i < h; i++) p[i] = (p[i * 2] + p[i * 2 + 1]) * inv2;
} else {
mint c = inv2;
buf.resize(h);
for (int i : btr) buf[i] = (p[i * 2] - p[i * 2 + 1]) * c, c *= iw;
swap(p, buf);
}
p.resize(h), q.resize(h);
p.intt(), q.intt();
for (int i = 0; i < h; i++) nP[i * 2 * k + j] = p[i];
for (int i = 0; i < h; i++) nQ[i * 2 * k + j] = q[i];
}
nP.resize((n / 2 + 1) * 2 * k);
nQ.resize((n / 2 + 1) * 2 * k);
swap(P, nP), swap(Q, nQ);
n /= 2, h /= 2, k *= 2;
}
fps S{begin(P), begin(P) + k};
fps T{begin(Q), begin(Q) + k};
S.intt(), T.intt(), T[0] -= 1;
if (f[0] == 0) return S.rev().pre(m + 1);
return (S.rev() * (T + (fps{1} << k)).rev().inv(m + 1)).pre(m + 1);
}
// g(f(x))
template <typename mint>
FormalPowerSeries<mint> composition(FormalPowerSeries<mint> f,
FormalPowerSeries<mint> g, int deg = -1) {
using fps = FormalPowerSeries<mint>;
auto dfs = [&](auto rc, fps Q, int n, int h, int k) -> fps {
if (n == 0) {
fps T{begin(Q), begin(Q) + k};
T.push_back(1);
fps u = g * T.rev().inv().rev();
fps P(h * k);
for (int i = 0; i < (int)g.size(); i++) P[k - 1 - i] = u[i + k];
return P;
}
fps nQ(4 * h * k), nR(2 * h * k);
for (int i = 0; i < k; i++) {
copy(begin(Q) + i * h, begin(Q) + i * h + n + 1, begin(nQ) + i * 2 * h);
}
nQ[k * 2 * h] += 1;
nQ.ntt();
for (int i = 0; i < 4 * h * k; i += 2) swap(nQ[i], nQ[i + 1]);
for (int i = 0; i < 2 * h * k; i++) nR[i] = nQ[i * 2] * nQ[i * 2 + 1];
nR.intt();
nR[0] -= 1;
Q.assign(h * k, 0);
for (int i = 0; i < 2 * k; i++) {
for (int j = 0; j <= n / 2; j++) {
Q[i * h / 2 + j] = nR[i * h + j];
}
}
auto P = rc(rc, Q, n / 2, h / 2, k * 2);
fps nP(4 * h * k);
for (int i = 0; i < 2 * k; i++) {
for (int j = 0; j <= n / 2; j++) {
nP[i * 2 * h + j * 2 + n % 2] = P[i * h / 2 + j];
}
}
nP.ntt();
for (int i = 1; i < 4 * h * k; i *= 2) {
reverse(begin(nQ) + i, begin(nQ) + i * 2);
}
for (int i = 0; i < 4 * h * k; i++) nP[i] *= nQ[i];
nP.intt();
P.assign(h * k, 0);
for (int i = 0; i < k; i++) {
copy(begin(nP) + i * 2 * h, begin(nP) + i * 2 * h + n + 1,
begin(P) + i * h);
}
return P;
};
if (deg == -1) deg = max(f.size(), g.size());
f.resize(deg), g.resize(deg);
int n = f.size() - 1, k = 1;
int h = 1;
while (h < n + 1) h *= 2;
fps Q(h * k);
for (int i = 0; i <= n; i++) Q[i] = -f[i];
fps P = dfs(dfs, Q, n, h, k);
return P.pre(n + 1).rev();
}
// f , f(g(x)) = x g(x) mod x^{deg}
template <typename mint>
FormalPowerSeries<mint> compositional_inverse(FormalPowerSeries<mint> f,
int deg = -1) {
assert(int(f.size()) == deg);
using fps = FormalPowerSeries<mint>;
assert((int)f.size() >= 2 and f[1] != 0);
if (deg == -1) deg = f.size();
if (deg < 2) return fps{0, f[1].inv()}.pre(deg);
int n = deg - 1;
fps h = pow_enumerate(f) * n;
for (int k = 1; k <= n; k++) h[k] /= k;
h = h.rev();
h *= h[0].inv();
fps g = (h.log() * mint{-n}.inv()).exp();
g *= f[1].inv();
return (g << 1).pre(deg);
}
// f(g(x)) = x g(x) mod x^{deg}
// calc_f(g, d) f(g(x)) mod x^d
template <typename fps>
fps compositional_inverse(function<fps(fps, int)> calc_f, int deg) {
if (deg <= 2) {
fps g = calc_f(fps{0, 1}, 2);
assert(g[0] == 0 && g[1] != 0);
g[1] = g[1].inv();
return g.pre(deg);
}
fps g = compositional_inverse(calc_f, (deg + 1) / 2);
fps fg = calc_f(g, deg + 1);
fps fdg = (fg.diff() * g.diff().inv(deg)).pre(deg);
return (g - (fg - fps{0, 1}) * fdg.inv()).pre(deg);
}
template<typename fps>
struct Merge{
int n;
using P = fps;
using Comp = std::function<bool(const P&, const P&)>;
Comp comp = [](const P& a, const P& b){return a.size() > b.size();};
priority_queue<P, vector<P>, Comp> pq;
Merge(int n = -1) : n(n), pq(comp){
pq.push(P{1});
}
void push(P r){
pq.push(r);
}
P get(){
while(pq.size() > 1){
auto f = pq.top(); pq.pop();
auto g = pq.top(); pq.pop();
f *= g;
if(n != -1) if(int(f.size()) > n) f.resize(n + 1);
pq.push(f);
}
P res = pq.top();
res.resize(n + 1);
return res;
}
};
using fps = FormalPowerSeries<mint>;
int main(){
int n, m;
cin >> n >> m;
vector<int> a(n);
cin >> a;
string s;
cin >> s;
vector<int> cnt(2 * m + 1);
cnt[m] = -1;
int shift = m;
int sum = -1;
for(int i = 0; i < m; i++){
if(s[i] == 's'){
shift--;
cnt[shift] = -1 - sum;
sum = -1;
}
if(s[i] == 'a'){
cnt[shift]--;
sum--;
}
}
Merge<FormalPowerSeries<mint>> p(n), q(n);
rep(i, m + 1){
if(cnt[shift + i] > 0){
rep(j, abs(cnt[shift + i])){
fps tmp = {1, -(1 + i)};
p.push(tmp);
}
}
if(cnt[shift + i] < 0){
rep(j, abs(cnt[shift + i])){
fps tmp = {1, -(1 + i)};
q.push(tmp);
}
}
}
auto c = (p.get() * q.get().inv(n)).pre(n);
mint ans = 0;
for(int k = 1; k <= n; k++) ans += a[k - 1] * c[k - 1] * c[n - k];
// cout << c;
cout << ans << "\n";
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0