結果

問題 No.2720 Sum of Subarray of Subsequence of...
ユーザー 👑 binapbinap
提出日時 2024-04-06 20:40:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 402 ms / 4,000 ms
コード長 22,374 bytes
コンパイル時間 4,470 ms
コンパイル使用メモリ 286,004 KB
実行使用メモリ 19,880 KB
最終ジャッジ日時 2024-10-01 04:03:23
合計ジャッジ時間 8,628 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 1 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 1 ms
6,816 KB
testcase_10 AC 1 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 1 ms
6,820 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 87 ms
8,272 KB
testcase_15 AC 108 ms
9,300 KB
testcase_16 AC 131 ms
10,236 KB
testcase_17 AC 150 ms
11,112 KB
testcase_18 AC 168 ms
11,796 KB
testcase_19 AC 192 ms
12,764 KB
testcase_20 AC 199 ms
13,012 KB
testcase_21 AC 213 ms
13,912 KB
testcase_22 AC 218 ms
14,168 KB
testcase_23 AC 228 ms
14,292 KB
testcase_24 AC 222 ms
12,884 KB
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 2 ms
6,820 KB
testcase_27 AC 38 ms
8,532 KB
testcase_28 AC 86 ms
7,244 KB
testcase_29 AC 86 ms
7,396 KB
testcase_30 AC 353 ms
18,012 KB
testcase_31 AC 402 ms
19,880 KB
testcase_32 AC 166 ms
12,500 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;

ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;}

template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}

using mint = modint998244353;

// thanks for Nyaan-san's library
// https://nyaannyaan.github.io/library/fps/formal-power-series.hpp

template <typename mint>
struct NTT {
	static constexpr uint32_t get_pr() {
		uint32_t _mod = mint::mod();
		using u64 = uint64_t;
		u64 ds[32] = {};
		int idx = 0;
		u64 m = _mod - 1;
		for (u64 i = 2; i * i <= m; ++i) {
			if (m % i == 0) {
				ds[idx++] = i;
				while (m % i == 0) m /= i;
			}
		}
		if (m != 1) ds[idx++] = m;

		uint32_t _pr = 2;
		while (1) {
			int flg = 1;
			for (int i = 0; i < idx; ++i) {
				u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
				while (b) {
					if (b & 1) r = r * a % _mod;
					a = a * a % _mod;
					b >>= 1;
				}
				if (r == 1) {
					flg = 0;
					break;
				}
			}
			if (flg == 1) break;
			++_pr;
		}
		return _pr;
	};

	static constexpr uint32_t mod = mint::mod();
	static constexpr uint32_t pr = get_pr();
	static constexpr int level = __builtin_ctzll(mod - 1);
	mint dw[level], dy[level];

	void setwy(int k) {
		mint w[level], y[level];
		w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
		y[k - 1] = w[k - 1].inv();
		for (int i = k - 2; i > 0; --i)
		w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
		dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
		for (int i = 3; i < k; ++i) {
			dw[i] = dw[i - 1] * y[i - 2] * w[i];
			dy[i] = dy[i - 1] * w[i - 2] * y[i];
		}
	}

	NTT() { setwy(level); }

	void fft4(vector<mint> &a, int k) {
		if ((int)a.size() <= 1) return;
		if (k == 1) {
			mint a1 = a[1];
			a[1] = a[0] - a[1];
			a[0] = a[0] + a1;
			return;
		}
		if (k & 1) {
			int v = 1 << (k - 1);
			for (int j = 0; j < v; ++j) {
				mint ajv = a[j + v];
				a[j + v] = a[j] - ajv;
				a[j] += ajv;
			}
		}
		int u = 1 << (2 + (k & 1));
		int v = 1 << (k - 2 - (k & 1));
		mint one = mint(1);
		mint imag = dw[1];
		while (v) {
			// jh = 0
			{
				int j0 = 0;
				int j1 = v;
				int j2 = j1 + v;
				int j3 = j2 + v;
				for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
					mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
					mint t0p2 = t0 + t2, t1p3 = t1 + t3;
					mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
					a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
					a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
				}
			}
			// jh >= 1
			mint ww = one, xx = one * dw[2], wx = one;
			for (int jh = 4; jh < u;) {
				ww = xx * xx, wx = ww * xx;
				int j0 = jh * v;
				int je = j0 + v;
				int j2 = je + v;
				for (; j0 < je; ++j0, ++j2) {
					mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
					t3 = a[j2 + v] * wx;
					mint t0p2 = t0 + t2, t1p3 = t1 + t3;
					mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
					a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
					a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
				}
				xx *= dw[__builtin_ctzll((jh += 4))];
			}
			u <<= 2;
			v >>= 2;
		}
	}

	void ifft4(vector<mint> &a, int k) {
		if ((int)a.size() <= 1) return;
		if (k == 1) {
			mint a1 = a[1];
			a[1] = a[0] - a[1];
			a[0] = a[0] + a1;
			return;
		}
		int u = 1 << (k - 2);
		int v = 1;
		mint one = mint(1);
		mint imag = dy[1];
		while (u) {
			// jh = 0
			{
				int j0 = 0;
				int j1 = v;
				int j2 = v + v;
				int j3 = j2 + v;
				for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
					mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
					mint t0p1 = t0 + t1, t2p3 = t2 + t3;
					mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
					a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
					a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
				}
			}
			// jh >= 1
			mint ww = one, xx = one * dy[2], yy = one;
			u <<= 2;
			for (int jh = 4; jh < u;) {
				ww = xx * xx, yy = xx * imag;
				int j0 = jh * v;
				int je = j0 + v;
				int j2 = je + v;
				for (; j0 < je; ++j0, ++j2) {
					mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
					mint t0p1 = t0 + t1, t2p3 = t2 + t3;
					mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
					a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
					a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
				}
				xx *= dy[__builtin_ctzll(jh += 4)];
			}
			u >>= 4;
			v <<= 2;
		}
		if (k & 1) {
			u = 1 << (k - 1);
			for (int j = 0; j < u; ++j) {
				mint ajv = a[j] - a[j + u];
				a[j] += a[j + u];
				a[j + u] = ajv;
			}
		}
	}

	void ntt(vector<mint> &a) {
		if ((int)a.size() <= 1) return;
		fft4(a, __builtin_ctz(a.size()));
	}

	void intt(vector<mint> &a) {
		if ((int)a.size() <= 1) return;
		ifft4(a, __builtin_ctz(a.size()));
		mint iv = mint(a.size()).inv();
		for (auto &x : a) x *= iv;
	}

	vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
		int l = a.size() + b.size() - 1;
		if (min<int>(a.size(), b.size()) <= 40) {
			vector<mint> s(l);
			for (int i = 0; i < (int)a.size(); ++i)
			for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
			return s;
		}
		int k = 2, M = 4;
		while (M < l) M <<= 1, ++k;
		setwy(k);
		vector<mint> s(M);
		for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
		fft4(s, k);
		if (a.size() == b.size() && a == b) {
			for (int i = 0; i < M; ++i) s[i] *= s[i];
		} else {
			vector<mint> t(M);
			for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
			fft4(t, k);
			for (int i = 0; i < M; ++i) s[i] *= t[i];
		}
		ifft4(s, k);
		s.resize(l);
		mint invm = mint(M).inv();
		for (int i = 0; i < l; ++i) s[i] *= invm;
		return s;
	}

	void ntt_doubling(vector<mint> &a) {
		int M = (int)a.size();
		auto b = a;
		intt(b);
		mint r = 1, zeta = mint(pr).pow((mint::mod() - 1) / (M << 1));
		for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
		ntt(b);
		copy(begin(b), end(b), back_inserter(a));
	}
};

template <typename mint>
struct FormalPowerSeries : vector<mint> {
	using vector<mint>::vector;
	using FPS = FormalPowerSeries;

	FPS &operator+=(const FPS &r) {
		if (r.size() > this->size()) this->resize(r.size());
		for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
		return *this;
	}

	FPS &operator+=(const mint &r) {
		if (this->empty()) this->resize(1);
		(*this)[0] += r;
		return *this;
	}

	FPS &operator-=(const FPS &r) {
		if (r.size() > this->size()) this->resize(r.size());
		for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
		return *this;
	}

	FPS &operator-=(const mint &r) {
		if (this->empty()) this->resize(1);
		(*this)[0] -= r;
		return *this;
	}

	FPS &operator*=(const mint &v) {
		for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
		return *this;
	}

	FPS &operator/=(const FPS &r) {
		if (this->size() < r.size()) {
			this->clear();
			return *this;
		}
		int n = this->size() - r.size() + 1;
		if ((int)r.size() <= 64) {
			FPS f(*this), g(r);
			g.shrink();
			mint coeff = g.back().inv();
			for (auto &x : g) x *= coeff;
			int deg = (int)f.size() - (int)g.size() + 1;
			int gs = g.size();
			FPS quo(deg);
			for (int i = deg - 1; i >= 0; i--) {
				quo[i] = f[i + gs - 1];
				for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
			}
			*this = quo * coeff;
			this->resize(n, mint(0));
			return *this;
		}
		return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
	}

	FPS &operator%=(const FPS &r) {
		*this -= *this / r * r;
		shrink();
		return *this;
	}

	FPS operator+(const FPS &r) const { return FPS(*this) += r; }
	FPS operator+(const mint &v) const { return FPS(*this) += v; }
	FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
	FPS operator-(const mint &v) const { return FPS(*this) -= v; }
	FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
	FPS operator*(const mint &v) const { return FPS(*this) *= v; }
	FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
	FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
	FPS operator-() const {
		FPS ret(this->size());
		for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
		return ret;
	}

	void shrink() {
		while (this->size() && this->back() == mint(0)) this->pop_back();
	}

	FPS rev() const {
		FPS ret(*this);
		reverse(begin(ret), end(ret));
		return ret;
	}

	FPS dot(FPS r) const {
		FPS ret(min(this->size(), r.size()));
		for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
		return ret;
	}

	// 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
	FPS pre(int sz) const {
		FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
		if ((int)ret.size() < sz) ret.resize(sz);
		return ret;
	}

	FPS operator>>(int sz) const {
		if ((int)this->size() <= sz) return {};
		FPS ret(*this);
		ret.erase(ret.begin(), ret.begin() + sz);
		return ret;
	}

	FPS operator<<(int sz) const {
		FPS ret(*this);
		ret.insert(ret.begin(), sz, mint(0));
		return ret;
	}

	FPS diff() const {
		const int n = (int)this->size();
		FPS ret(max(0, n - 1));
		mint one(1), coeff(1);
		for (int i = 1; i < n; i++) {
			ret[i - 1] = (*this)[i] * coeff;
			coeff += one;
		}
		return ret;
	}

	FPS integral() const {
		const int n = (int)this->size();
		FPS ret(n + 1);
		ret[0] = mint(0);
		if (n > 0) ret[1] = mint(1);
		auto mod = mint::mod();
		for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
		for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
		return ret;
	}

	mint eval(mint x) const {
		mint r = 0, w = 1;
		for (auto &v : *this) r += w * v, w *= x;
		return r;
	}

	FPS log(int deg = -1) const {
		assert(!(*this).empty() && (*this)[0] == mint(1));
		if (deg == -1) deg = (int)this->size();
		return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
	}

	FPS pow(int64_t k, int deg = -1) const {
		const int n = (int)this->size();
		if (deg == -1) deg = n;
		if (k == 0) {
			FPS ret(deg);
			if (deg) ret[0] = 1;
			return ret;
		}
		for (int i = 0; i < n; i++) {
			if ((*this)[i] != mint(0)) {
				mint rev = mint(1) / (*this)[i];
				FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
				ret *= (*this)[i].pow(k);
				ret = (ret << (i * k)).pre(deg);
				if ((int)ret.size() < deg) ret.resize(deg, mint(0));
				return ret;
			}
			if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
		}
		return FPS(deg, mint(0));
	}

	static void *ntt_ptr;
	static void set_fft();
	FPS &operator*=(const FPS &r);
	void ntt();
	void intt();
	void ntt_doubling();
	static int ntt_pr();
	FPS inv(int deg = -1) const;
	FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
	if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
const FormalPowerSeries<mint>& r) {
	if (this->empty() || r.empty()) {
		this->clear();
		return *this;
	}
	set_fft();
	auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
	return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
	set_fft();
	static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
	set_fft();
	static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
	set_fft();
	static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
	set_fft();
	return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
	assert((*this)[0] != mint(0));
	if (deg == -1) deg = (int)this->size();
	FormalPowerSeries<mint> res(deg);
	res[0] = {mint(1) / (*this)[0]};
	for (int d = 1; d < deg; d <<= 1) {
		FormalPowerSeries<mint> f(2 * d), g(2 * d);
		for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
		for (int j = 0; j < d; j++) g[j] = res[j];
		f.ntt();
		g.ntt();
		for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
		f.intt();
		for (int j = 0; j < d; j++) f[j] = 0;
		f.ntt();
		for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
		f.intt();
		for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
	}
	return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
	using fps = FormalPowerSeries<mint>;
	assert((*this).size() == 0 || (*this)[0] == mint(0));
	if (deg == -1) deg = this->size();

	fps inv;
	inv.reserve(deg + 1);
	inv.push_back(mint(0));
	inv.push_back(mint(1));

	auto inplace_integral = [&](fps& F) -> void {
		const int n = (int)F.size();
		auto mod = mint::mod();
		while ((int)inv.size() <= n) {
			int i = inv.size();
			inv.push_back((-inv[mod % i]) * (mod / i));
		}
		F.insert(begin(F), mint(0));
		for (int i = 1; i <= n; i++) F[i] *= inv[i];
	};

	auto inplace_diff = [](fps& F) -> void {
		if (F.empty()) return;
		F.erase(begin(F));
		mint coeff = 1, one = 1;
		for (int i = 0; i < (int)F.size(); i++) {
			F[i] *= coeff;
			coeff += one;
		}
	};

	fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
	for (int m = 2; m < deg; m *= 2) {
		auto y = b;
		y.resize(2 * m);
		y.ntt();
		z1 = z2;
		fps z(m);
		for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
		z.intt();
		fill(begin(z), begin(z) + m / 2, mint(0));
		z.ntt();
		for (int i = 0; i < m; ++i) z[i] *= -z1[i];
		z.intt();
		c.insert(end(c), begin(z) + m / 2, end(z));
		z2 = c;
		z2.resize(2 * m);
		z2.ntt();
		fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
		x.resize(m);
		inplace_diff(x);
		x.push_back(mint(0));
		x.ntt();
		for (int i = 0; i < m; ++i) x[i] *= y[i];
		x.intt();
		x -= b.diff();
		x.resize(2 * m);
		for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
		x.ntt();
		for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
		x.intt();
		x.pop_back();
		inplace_integral(x);
		for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
		fill(begin(x), begin(x) + m, mint(0));
		x.ntt();
		for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
		x.intt();
		b.insert(end(b), begin(x) + m, end(x));
	}
	return fps{begin(b), begin(b) + deg};
}

// [x^n] f(x)^i g(x) を i=0,1,...,m で列挙
// n = (f の次数) - 1
template <typename mint>
FormalPowerSeries<mint> pow_enumerate(FormalPowerSeries<mint> f,
FormalPowerSeries<mint> g = {1},
int m = -1) {
	using fps = FormalPowerSeries<mint>;
	int n = f.size() - 1, k = 1;
	g.resize(n + 1);
	if (m == -1) m = n;
	int h = 1;
	while (h < n + 1) h *= 2;
	fps P((n + 1) * k), Q((n + 1) * k), nP, nQ, buf, buf2;
	for (int i = 0; i <= n; i++) P[i * k + 0] = g[i];
	for (int i = 0; i <= n; i++) Q[i * k + 0] = -f[i];
	Q[0] += 1;
	while (n) {
		mint inv2 = mint{2}.inv();
		mint w = mint{fps::ntt_pr()}.pow((mint::mod() - 1) / (2 * k));
		mint iw = w.inv();

		buf2.resize(k);
		auto ntt_doubling = [&]() {
			copy(begin(buf), end(buf), begin(buf2));
			buf2.intt();
			mint c = 1;
			for (int i = 0; i < k; i++) buf2[i] *= c, c *= w;
			buf2.ntt();
			copy(begin(buf2), end(buf2), back_inserter(buf));
		};

		nP.clear(), nQ.clear();
		for (int i = 0; i <= n; i++) {
			buf.resize(k);
			copy(begin(P) + i * k, begin(P) + (i + 1) * k, begin(buf));
			ntt_doubling();
			copy(begin(buf), end(buf), back_inserter(nP));

			buf.resize(k);
			copy(begin(Q) + i * k, begin(Q) + (i + 1) * k, begin(buf));
			if (i == 0) {
				for (int j = 0; j < k; j++) buf[j] -= 1;
				ntt_doubling();
				for (int j = 0; j < k; j++) buf[j] += 1;
				for (int j = 0; j < k; j++) buf[k + j] -= 1;
			} else {
				ntt_doubling();
			}
			copy(begin(buf), end(buf), back_inserter(nQ));
		}
		nP.resize(2 * h * 2 * k);
		nQ.resize(2 * h * 2 * k);
		fps p(2 * h), q(2 * h);

		w = mint{fps::ntt_pr()}.pow((mint::mod() - 1) / (2 * h));
		iw = w.inv();
		vector<int> btr;
		if (n % 2) {
			btr.resize(h);
			for (int i = 0, lg = __builtin_ctz(h); i < h; i++) {
				btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (lg - 1));
			}
		}

		for (int j = 0; j < 2 * k; j++) {
			p.assign(2 * h, 0);
			q.assign(2 * h, 0);
			for (int i = 0; i < h; i++) {
				p[i] = nP[i * 2 * k + j], q[i] = nQ[i * 2 * k + j];
			}
			p.ntt(), q.ntt();
			for (int i = 0; i < 2 * h; i += 2) swap(q[i], q[i + 1]);
			for (int i = 0; i < 2 * h; i++) p[i] *= q[i];
			for (int i = 0; i < h; i++) q[i] = q[i * 2] * q[i * 2 + 1];
			if (n % 2 == 0) {
				for (int i = 0; i < h; i++) p[i] = (p[i * 2] + p[i * 2 + 1]) * inv2;
			} else {
				mint c = inv2;
				buf.resize(h);
				for (int i : btr) buf[i] = (p[i * 2] - p[i * 2 + 1]) * c, c *= iw;
				swap(p, buf);
			}
			p.resize(h), q.resize(h);
			p.intt(), q.intt();
			for (int i = 0; i < h; i++) nP[i * 2 * k + j] = p[i];
			for (int i = 0; i < h; i++) nQ[i * 2 * k + j] = q[i];
		}
		nP.resize((n / 2 + 1) * 2 * k);
		nQ.resize((n / 2 + 1) * 2 * k);
		swap(P, nP), swap(Q, nQ);
		n /= 2, h /= 2, k *= 2;
	}

	fps S{begin(P), begin(P) + k};
	fps T{begin(Q), begin(Q) + k};
	S.intt(), T.intt(), T[0] -= 1;
	if (f[0] == 0) return S.rev().pre(m + 1);
	return (S.rev() * (T + (fps{1} << k)).rev().inv(m + 1)).pre(m + 1);
}

// g(f(x)) を計算
template <typename mint>
FormalPowerSeries<mint> composition(FormalPowerSeries<mint> f,
FormalPowerSeries<mint> g, int deg = -1) {
	using fps = FormalPowerSeries<mint>;

	auto dfs = [&](auto rc, fps Q, int n, int h, int k) -> fps {
		if (n == 0) {
			fps T{begin(Q), begin(Q) + k};
			T.push_back(1);
			fps u = g * T.rev().inv().rev();
			fps P(h * k);
			for (int i = 0; i < (int)g.size(); i++) P[k - 1 - i] = u[i + k];
			return P;
		}
		fps nQ(4 * h * k), nR(2 * h * k);
		for (int i = 0; i < k; i++) {
			copy(begin(Q) + i * h, begin(Q) + i * h + n + 1, begin(nQ) + i * 2 * h);
		}
		nQ[k * 2 * h] += 1;
		nQ.ntt();
		for (int i = 0; i < 4 * h * k; i += 2) swap(nQ[i], nQ[i + 1]);
		for (int i = 0; i < 2 * h * k; i++) nR[i] = nQ[i * 2] * nQ[i * 2 + 1];
		nR.intt();
		nR[0] -= 1;
		Q.assign(h * k, 0);
		for (int i = 0; i < 2 * k; i++) {
			for (int j = 0; j <= n / 2; j++) {
				Q[i * h / 2 + j] = nR[i * h + j];
			}
		}
		auto P = rc(rc, Q, n / 2, h / 2, k * 2);
		fps nP(4 * h * k);
		for (int i = 0; i < 2 * k; i++) {
			for (int j = 0; j <= n / 2; j++) {
				nP[i * 2 * h + j * 2 + n % 2] = P[i * h / 2 + j];
			}
		}
		nP.ntt();
		for (int i = 1; i < 4 * h * k; i *= 2) {
			reverse(begin(nQ) + i, begin(nQ) + i * 2);
		}
		for (int i = 0; i < 4 * h * k; i++) nP[i] *= nQ[i];
		nP.intt();
		P.assign(h * k, 0);
		for (int i = 0; i < k; i++) {
			copy(begin(nP) + i * 2 * h, begin(nP) + i * 2 * h + n + 1,
			begin(P) + i * h);
		}
		return P;
	};

	if (deg == -1) deg = max(f.size(), g.size());
	f.resize(deg), g.resize(deg);
	int n = f.size() - 1, k = 1;
	int h = 1;
	while (h < n + 1) h *= 2;
	fps Q(h * k);
	for (int i = 0; i <= n; i++) Q[i] = -f[i];
	fps P = dfs(dfs, Q, n, h, k);
	return P.pre(n + 1).rev();
}

// f を入力として, f(g(x)) = x を満たす g(x) mod x^{deg} を返す
template <typename mint>
FormalPowerSeries<mint> compositional_inverse(FormalPowerSeries<mint> f,
int deg = -1) {
	assert(int(f.size()) == deg);
	using fps = FormalPowerSeries<mint>;
	assert((int)f.size() >= 2 and f[1] != 0);
	if (deg == -1) deg = f.size();
	if (deg < 2) return fps{0, f[1].inv()}.pre(deg);
	int n = deg - 1;
	fps h = pow_enumerate(f) * n;
	for (int k = 1; k <= n; k++) h[k] /= k;
	h = h.rev();
	h *= h[0].inv();
	fps g = (h.log() * mint{-n}.inv()).exp();
	g *= f[1].inv();
	return (g << 1).pre(deg);
}

// f(g(x)) = x を満たす g(x) mod x^{deg} を返す
// calc_f(g, d) は f(g(x)) mod x^d を計算する関数
template <typename fps>
fps compositional_inverse(function<fps(fps, int)> calc_f, int deg) {
	if (deg <= 2) {
		fps g = calc_f(fps{0, 1}, 2);
		assert(g[0] == 0 && g[1] != 0);
		g[1] = g[1].inv();
		return g.pre(deg);
	}
	fps g = compositional_inverse(calc_f, (deg + 1) / 2);
	fps fg = calc_f(g, deg + 1);
	fps fdg = (fg.diff() * g.diff().inv(deg)).pre(deg);
	return (g - (fg - fps{0, 1}) * fdg.inv()).pre(deg);
}

template<typename fps>
struct Merge{
	int n;
	using P = fps;
	using Comp = std::function<bool(const P&, const P&)>;
	Comp comp = [](const P& a, const P& b){return a.size() > b.size();};
	priority_queue<P, vector<P>, Comp> pq;
	Merge(int n = -1) : n(n), pq(comp){
		pq.push(P{1});
	}
	void push(P r){
		pq.push(r);
	}
	P get(){
		while(pq.size() > 1){
			auto f = pq.top(); pq.pop();
			auto g = pq.top(); pq.pop();
			f *= g;
			if(n != -1) if(int(f.size()) > n) f.resize(n + 1);
			pq.push(f);
		}
		P res = pq.top();
		res.resize(n + 1);
		return res;
	}
};

using fps = FormalPowerSeries<mint>;

int main(){
	int n, m;
	cin >> n >> m;
	vector<int> a(n);
	cin >> a;
	string s;
	cin >> s;
	vector<int> cnt(2 * m + 1);
	cnt[m] = -1;
	int shift = m;
	int sum = -1;
	for(int i = 0; i < m; i++){
		if(s[i] == 's'){
			shift--;
			cnt[shift] = -1 - sum;
			sum = -1;
		}
		if(s[i] == 'a'){
			cnt[shift]--;
			sum--;
		}
	}
	Merge<FormalPowerSeries<mint>> p(n), q(n);
	rep(i, m + 1){
		if(cnt[shift + i] > 0){
			rep(j, abs(cnt[shift + i])){
				fps tmp = {1, -(1 + i)};
				p.push(tmp);
			}
		}
		if(cnt[shift + i] < 0){
			rep(j, abs(cnt[shift + i])){
				fps tmp = {1, -(1 + i)};
				q.push(tmp);
			}
		}
	}
	auto c = (p.get() * q.get().inv(n)).pre(n);
	mint ans = 0;
	for(int k = 1; k <= n; k++) ans += a[k - 1] * c[k - 1] * c[n - k];
//	cout << c;
	cout << ans << "\n";
	return 0;
}
0