結果
問題 | No.856 増える演算 |
ユーザー | vwxyz |
提出日時 | 2024-04-08 06:32:15 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,830 ms / 3,153 ms |
コード長 | 3,767 bytes |
コンパイル時間 | 402 ms |
コンパイル使用メモリ | 82,388 KB |
実行使用メモリ | 306,500 KB |
最終ジャッジ日時 | 2024-10-01 04:53:55 |
合計ジャッジ時間 | 59,033 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
53,268 KB |
testcase_01 | AC | 80 ms
77,176 KB |
testcase_02 | AC | 39 ms
53,720 KB |
testcase_03 | AC | 41 ms
55,020 KB |
testcase_04 | AC | 41 ms
54,512 KB |
testcase_05 | AC | 40 ms
53,924 KB |
testcase_06 | AC | 41 ms
55,696 KB |
testcase_07 | AC | 42 ms
54,304 KB |
testcase_08 | AC | 41 ms
55,024 KB |
testcase_09 | AC | 40 ms
54,496 KB |
testcase_10 | AC | 41 ms
54,664 KB |
testcase_11 | AC | 40 ms
55,804 KB |
testcase_12 | AC | 42 ms
55,060 KB |
testcase_13 | AC | 81 ms
77,664 KB |
testcase_14 | AC | 80 ms
77,656 KB |
testcase_15 | AC | 82 ms
77,296 KB |
testcase_16 | AC | 84 ms
77,312 KB |
testcase_17 | AC | 82 ms
77,420 KB |
testcase_18 | AC | 79 ms
77,392 KB |
testcase_19 | AC | 87 ms
77,184 KB |
testcase_20 | AC | 87 ms
77,616 KB |
testcase_21 | AC | 87 ms
77,408 KB |
testcase_22 | AC | 83 ms
77,424 KB |
testcase_23 | AC | 54 ms
66,176 KB |
testcase_24 | AC | 55 ms
66,064 KB |
testcase_25 | AC | 53 ms
64,496 KB |
testcase_26 | AC | 41 ms
55,160 KB |
testcase_27 | AC | 40 ms
54,984 KB |
testcase_28 | AC | 53 ms
65,112 KB |
testcase_29 | AC | 54 ms
65,408 KB |
testcase_30 | AC | 53 ms
66,644 KB |
testcase_31 | AC | 58 ms
65,600 KB |
testcase_32 | AC | 59 ms
65,772 KB |
testcase_33 | AC | 103 ms
77,784 KB |
testcase_34 | AC | 116 ms
79,924 KB |
testcase_35 | AC | 108 ms
78,460 KB |
testcase_36 | AC | 118 ms
79,656 KB |
testcase_37 | AC | 115 ms
78,964 KB |
testcase_38 | AC | 88 ms
77,776 KB |
testcase_39 | AC | 91 ms
77,432 KB |
testcase_40 | AC | 95 ms
78,016 KB |
testcase_41 | AC | 96 ms
77,672 KB |
testcase_42 | AC | 111 ms
79,568 KB |
testcase_43 | AC | 97 ms
77,568 KB |
testcase_44 | AC | 82 ms
77,604 KB |
testcase_45 | AC | 94 ms
77,372 KB |
testcase_46 | AC | 98 ms
77,580 KB |
testcase_47 | AC | 94 ms
78,108 KB |
testcase_48 | AC | 104 ms
78,624 KB |
testcase_49 | AC | 104 ms
77,920 KB |
testcase_50 | AC | 111 ms
78,616 KB |
testcase_51 | AC | 111 ms
79,596 KB |
testcase_52 | AC | 114 ms
79,796 KB |
testcase_53 | AC | 1,721 ms
298,176 KB |
testcase_54 | AC | 1,705 ms
297,272 KB |
testcase_55 | AC | 1,700 ms
298,032 KB |
testcase_56 | AC | 1,654 ms
297,128 KB |
testcase_57 | AC | 1,724 ms
298,648 KB |
testcase_58 | AC | 1,714 ms
298,104 KB |
testcase_59 | AC | 1,773 ms
299,364 KB |
testcase_60 | AC | 1,669 ms
297,600 KB |
testcase_61 | AC | 1,747 ms
299,408 KB |
testcase_62 | AC | 1,712 ms
299,264 KB |
testcase_63 | AC | 1,647 ms
306,500 KB |
testcase_64 | AC | 1,748 ms
298,604 KB |
testcase_65 | AC | 1,642 ms
306,488 KB |
testcase_66 | AC | 1,652 ms
297,572 KB |
testcase_67 | AC | 1,668 ms
298,100 KB |
testcase_68 | AC | 1,742 ms
299,276 KB |
testcase_69 | AC | 1,764 ms
298,860 KB |
testcase_70 | AC | 1,830 ms
300,108 KB |
testcase_71 | AC | 1,761 ms
299,348 KB |
testcase_72 | AC | 1,759 ms
298,356 KB |
testcase_73 | AC | 1,799 ms
300,120 KB |
testcase_74 | AC | 1,780 ms
300,128 KB |
testcase_75 | AC | 1,773 ms
300,128 KB |
testcase_76 | AC | 1,775 ms
300,128 KB |
testcase_77 | AC | 1,768 ms
300,252 KB |
testcase_78 | AC | 1,816 ms
300,228 KB |
testcase_79 | AC | 1,827 ms
299,876 KB |
testcase_80 | AC | 1,786 ms
299,884 KB |
testcase_81 | AC | 1,796 ms
299,872 KB |
testcase_82 | AC | 1,727 ms
299,964 KB |
ソースコード
def FFT(polynomial0,polynomial1,digit=10**5,round_to_int=True): assert digit==0 or round_to_int if len(polynomial0)*len(polynomial1)<=60: polynomial=[0]*(len(polynomial0)+len(polynomial1)-1) for i in range(len(polynomial0)): for j in range(len(polynomial1)): polynomial[i+j]+=polynomial0[i]*polynomial1[j] return polynomial def DFT(polynomial,n,inverse=False): if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) def FFT_(polynomial0,polynomial1,round_to_int=True): N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 n=(N-1).bit_length() polynomial0=polynomial0+[0]*((1<<n)-N0) polynomial1=polynomial1+[0]*((1<<n)-N1) DFT(polynomial0,n) DFT(polynomial1,n) fft=[x*y for x,y in zip(polynomial0,polynomial1)] DFT(fft,n,inverse=True) if round_to_int: fft=[round((fft[i]/(1<<n)).real) for i in range(N)] else: fft=[(fft[i]/(1<<n)).real for i in range(N)] return fft if digit: N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 polynomial00,polynomial01=[None]*N0,[None]*N0 polynomial10,polynomial11=[None]*N1,[None]*N1 for i in range(N0): polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit) for i in range(N1): polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit) polynomial=[0]*N for i,x in enumerate(FFT_(polynomial00,polynomial10)): polynomial[i]+=x*(digit**2-digit) for i,x in enumerate(FFT_(polynomial01,polynomial11)): polynomial[i]-=x*(digit-1) for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])): polynomial[i]+=x*digit else: polynomial=FFT_(polynomial0,polynomial1,round_to_int=round_to_int) return polynomial import math import sys #sys.set_int_max_str_digits(10**7) N=int(input()) mod=998244353 A=list(map(int,input().split())) max_A=max(A) cnt=[0]*(max_A+1) for a in A: cnt[a]+=1 cnt=FFT(cnt,cnt) mod=10**9+7 M=1 prod_A=1 for a in A: prod_A*=a prod_A%=mod for a in A: cnt[a*2]-=1 ans=1 for a in range(1,max_A*2+1): ans*=pow(a,cnt[a]//2,mod) ans%=mod cumsum=[0]+A for i in range(1,N+1): cumsum[i]+=cumsum[i-1] for i in range(N): ans*=pow(A[i],cumsum[N]-cumsum[i+1],mod) ans%=mod j=A.index(min(A)) if j: i=A[:j].index(min(A[:j])) else: i=None if j<N-1: k=j+1+A[j+1:N].index(min(A[j+1:N])) else: k=None if i==None: mi=(A[j]+A[k])*A[j]**A[k] elif k==None: mi=(A[i]+A[j])*A[i]**A[j] else: mi=min((A[j]+A[k])*A[j]**A[k],(A[i]+A[j])*A[i]**A[j]) ans*=pow(mi,mod-2,mod) ans%=mod print(ans)