結果
問題 |
No.856 増える演算
|
ユーザー |
![]() |
提出日時 | 2024-04-08 06:32:15 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,830 ms / 3,153 ms |
コード長 | 3,767 bytes |
コンパイル時間 | 402 ms |
コンパイル使用メモリ | 82,388 KB |
実行使用メモリ | 306,500 KB |
最終ジャッジ日時 | 2024-10-01 04:53:55 |
合計ジャッジ時間 | 59,033 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 80 |
ソースコード
def FFT(polynomial0,polynomial1,digit=10**5,round_to_int=True): assert digit==0 or round_to_int if len(polynomial0)*len(polynomial1)<=60: polynomial=[0]*(len(polynomial0)+len(polynomial1)-1) for i in range(len(polynomial0)): for j in range(len(polynomial1)): polynomial[i+j]+=polynomial0[i]*polynomial1[j] return polynomial def DFT(polynomial,n,inverse=False): if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) def FFT_(polynomial0,polynomial1,round_to_int=True): N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 n=(N-1).bit_length() polynomial0=polynomial0+[0]*((1<<n)-N0) polynomial1=polynomial1+[0]*((1<<n)-N1) DFT(polynomial0,n) DFT(polynomial1,n) fft=[x*y for x,y in zip(polynomial0,polynomial1)] DFT(fft,n,inverse=True) if round_to_int: fft=[round((fft[i]/(1<<n)).real) for i in range(N)] else: fft=[(fft[i]/(1<<n)).real for i in range(N)] return fft if digit: N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 polynomial00,polynomial01=[None]*N0,[None]*N0 polynomial10,polynomial11=[None]*N1,[None]*N1 for i in range(N0): polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit) for i in range(N1): polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit) polynomial=[0]*N for i,x in enumerate(FFT_(polynomial00,polynomial10)): polynomial[i]+=x*(digit**2-digit) for i,x in enumerate(FFT_(polynomial01,polynomial11)): polynomial[i]-=x*(digit-1) for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])): polynomial[i]+=x*digit else: polynomial=FFT_(polynomial0,polynomial1,round_to_int=round_to_int) return polynomial import math import sys #sys.set_int_max_str_digits(10**7) N=int(input()) mod=998244353 A=list(map(int,input().split())) max_A=max(A) cnt=[0]*(max_A+1) for a in A: cnt[a]+=1 cnt=FFT(cnt,cnt) mod=10**9+7 M=1 prod_A=1 for a in A: prod_A*=a prod_A%=mod for a in A: cnt[a*2]-=1 ans=1 for a in range(1,max_A*2+1): ans*=pow(a,cnt[a]//2,mod) ans%=mod cumsum=[0]+A for i in range(1,N+1): cumsum[i]+=cumsum[i-1] for i in range(N): ans*=pow(A[i],cumsum[N]-cumsum[i+1],mod) ans%=mod j=A.index(min(A)) if j: i=A[:j].index(min(A[:j])) else: i=None if j<N-1: k=j+1+A[j+1:N].index(min(A[j+1:N])) else: k=None if i==None: mi=(A[j]+A[k])*A[j]**A[k] elif k==None: mi=(A[i]+A[j])*A[i]**A[j] else: mi=min((A[j]+A[k])*A[j]**A[k],(A[i]+A[j])*A[i]**A[j]) ans*=pow(mi,mod-2,mod) ans%=mod print(ans)