結果
問題 | No.856 増える演算 |
ユーザー |
![]() |
提出日時 | 2024-04-08 06:32:15 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,830 ms / 3,153 ms |
コード長 | 3,767 bytes |
コンパイル時間 | 402 ms |
コンパイル使用メモリ | 82,388 KB |
実行使用メモリ | 306,500 KB |
最終ジャッジ日時 | 2024-10-01 04:53:55 |
合計ジャッジ時間 | 59,033 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 80 |
ソースコード
def FFT(polynomial0,polynomial1,digit=10**5,round_to_int=True):assert digit==0 or round_to_intif len(polynomial0)*len(polynomial1)<=60:polynomial=[0]*(len(polynomial0)+len(polynomial1)-1)for i in range(len(polynomial0)):for j in range(len(polynomial1)):polynomial[i+j]+=polynomial0[i]*polynomial1[j]return polynomialdef DFT(polynomial,n,inverse=False):if inverse:primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]else:primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]if inverse:for bit in range(1,n+1):a=1<<bit-1for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+apolynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]else:for bit in range(n,0,-1):a=1<<bit-1for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+apolynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])def FFT_(polynomial0,polynomial1,round_to_int=True):N0=len(polynomial0)N1=len(polynomial1)N=N0+N1-1n=(N-1).bit_length()polynomial0=polynomial0+[0]*((1<<n)-N0)polynomial1=polynomial1+[0]*((1<<n)-N1)DFT(polynomial0,n)DFT(polynomial1,n)fft=[x*y for x,y in zip(polynomial0,polynomial1)]DFT(fft,n,inverse=True)if round_to_int:fft=[round((fft[i]/(1<<n)).real) for i in range(N)]else:fft=[(fft[i]/(1<<n)).real for i in range(N)]return fftif digit:N0=len(polynomial0)N1=len(polynomial1)N=N0+N1-1polynomial00,polynomial01=[None]*N0,[None]*N0polynomial10,polynomial11=[None]*N1,[None]*N1for i in range(N0):polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit)for i in range(N1):polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit)polynomial=[0]*Nfor i,x in enumerate(FFT_(polynomial00,polynomial10)):polynomial[i]+=x*(digit**2-digit)for i,x in enumerate(FFT_(polynomial01,polynomial11)):polynomial[i]-=x*(digit-1)for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])):polynomial[i]+=x*digitelse:polynomial=FFT_(polynomial0,polynomial1,round_to_int=round_to_int)return polynomialimport mathimport sys#sys.set_int_max_str_digits(10**7)N=int(input())mod=998244353A=list(map(int,input().split()))max_A=max(A)cnt=[0]*(max_A+1)for a in A:cnt[a]+=1cnt=FFT(cnt,cnt)mod=10**9+7M=1prod_A=1for a in A:prod_A*=aprod_A%=modfor a in A:cnt[a*2]-=1ans=1for a in range(1,max_A*2+1):ans*=pow(a,cnt[a]//2,mod)ans%=modcumsum=[0]+Afor i in range(1,N+1):cumsum[i]+=cumsum[i-1]for i in range(N):ans*=pow(A[i],cumsum[N]-cumsum[i+1],mod)ans%=modj=A.index(min(A))if j:i=A[:j].index(min(A[:j]))else:i=Noneif j<N-1:k=j+1+A[j+1:N].index(min(A[j+1:N]))else:k=Noneif i==None:mi=(A[j]+A[k])*A[j]**A[k]elif k==None:mi=(A[i]+A[j])*A[i]**A[j]else:mi=min((A[j]+A[k])*A[j]**A[k],(A[i]+A[j])*A[i]**A[j])ans*=pow(mi,mod-2,mod)ans%=modprint(ans)