結果
問題 | No.827 総神童数 |
ユーザー | vwxyz |
提出日時 | 2024-04-08 07:39:54 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 474 ms / 2,000 ms |
コード長 | 9,064 bytes |
コンパイル時間 | 351 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 139,824 KB |
最終ジャッジ日時 | 2024-10-01 04:59:14 |
合計ジャッジ時間 | 12,034 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
53,504 KB |
testcase_01 | AC | 45 ms
53,632 KB |
testcase_02 | AC | 43 ms
54,272 KB |
testcase_03 | AC | 42 ms
53,376 KB |
testcase_04 | AC | 43 ms
54,016 KB |
testcase_05 | AC | 43 ms
54,016 KB |
testcase_06 | AC | 42 ms
53,504 KB |
testcase_07 | AC | 42 ms
53,760 KB |
testcase_08 | AC | 44 ms
54,144 KB |
testcase_09 | AC | 444 ms
139,824 KB |
testcase_10 | AC | 187 ms
94,976 KB |
testcase_11 | AC | 97 ms
77,312 KB |
testcase_12 | AC | 140 ms
84,896 KB |
testcase_13 | AC | 373 ms
132,936 KB |
testcase_14 | AC | 102 ms
77,596 KB |
testcase_15 | AC | 191 ms
95,868 KB |
testcase_16 | AC | 358 ms
129,600 KB |
testcase_17 | AC | 436 ms
126,480 KB |
testcase_18 | AC | 216 ms
98,120 KB |
testcase_19 | AC | 474 ms
130,996 KB |
testcase_20 | AC | 385 ms
114,364 KB |
testcase_21 | AC | 254 ms
101,632 KB |
testcase_22 | AC | 378 ms
118,852 KB |
testcase_23 | AC | 103 ms
77,184 KB |
testcase_24 | AC | 419 ms
123,620 KB |
testcase_25 | AC | 303 ms
108,980 KB |
testcase_26 | AC | 425 ms
123,640 KB |
testcase_27 | AC | 307 ms
106,036 KB |
testcase_28 | AC | 294 ms
105,464 KB |
testcase_29 | AC | 274 ms
100,808 KB |
testcase_30 | AC | 148 ms
83,328 KB |
testcase_31 | AC | 208 ms
97,024 KB |
testcase_32 | AC | 210 ms
97,396 KB |
testcase_33 | AC | 444 ms
128,124 KB |
testcase_34 | AC | 398 ms
123,504 KB |
testcase_35 | AC | 235 ms
97,280 KB |
testcase_36 | AC | 247 ms
102,892 KB |
testcase_37 | AC | 293 ms
109,500 KB |
testcase_38 | AC | 422 ms
122,736 KB |
ソースコード
class Graph: def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph!=None: self.graph=graph """ self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) """ else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N=int(input()) edges=[] for i in range(N-1): u,v=map(int,input().split()) u-=1;v-=1 edges.append((u,v)) G=Graph(N,edges=edges) dist=G.SIV_DFS(0,unweighted_dist=True) mod=10**9+7 MD=MOD(mod) MD.Build_Fact(N) MD.Build_Inverse(N) ans=0 for x in range(N): ans+=MD.Inverse(dist[x]+1) ans%=mod ans*=MD.Fact(N) ans%=mod print(ans)