結果
| 問題 |
No.2688 Cell Proliferation (Hard)
|
| コンテスト | |
| ユーザー |
tpyneriver
|
| 提出日時 | 2024-04-09 17:46:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,883 bytes |
| コンパイル時間 | 302 ms |
| コンパイル使用メモリ | 82,440 KB |
| 実行使用メモリ | 152,092 KB |
| 最終ジャッジ日時 | 2024-10-01 18:01:05 |
| 合計ジャッジ時間 | 27,237 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 WA * 22 |
ソースコード
import sys
readline = sys.stdin.readline
MOD = 998244353
_IMAG = 911660635
_IIMAG = 86583718
_rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)
_irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)
_rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
_irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)
def _fft(a):
n = len(a)
h = (n - 1).bit_length()
le = 0
for le in range(0, h - 1, 2):
p = 1 << (h - le - 2)
rot = 1
for s in range(1 << le):
rot2 = rot * rot % MOD
rot3 = rot2 * rot % MOD
offset = s << (h - le)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % MOD * _IMAG
a[i + offset] = (a0 + a2 + a1 + a3) % MOD
a[i + offset + p] = (a0 + a2 - a1 - a3) % MOD
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MOD
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MOD
rot = rot * _rate3[(~s & -~s).bit_length()] % MOD
if h - le & 1:
rot = 1
for s in range(1 << (h - 1)):
offset = s << 1
l = a[offset]
r = a[offset + 1] * rot
a[offset] = (l + r) % MOD
a[offset + 1] = (l - r) % MOD
rot = rot * _rate2[(~s & -~s).bit_length()] % MOD
def _ifft(a):
n = len(a)
h = (n - 1).bit_length()
le = h
for le in range(h, 1, -2):
p = 1 << (h - le)
irot = 1
for s in range(1 << (le - 2)):
irot2 = irot * irot % MOD
irot3 = irot2 * irot % MOD
offset = s << (h - le + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * _IIMAG % MOD
a[i + offset] = (a0 + a1 + a2 + a3) % MOD
a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MOD
a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MOD
a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MOD
irot = irot * _irate3[(~s & -~s).bit_length()] % MOD
if le & 1:
p = 1 << (h - 1)
for i in range(p):
l = a[i]
r = a[i + p]
a[i] = l + r if l + r < MOD else l + r - MOD
a[i + p] = l - r if l - r >= 0 else l - r + MOD
def ntt(a) -> None:
if len(a) <= 1: return
_fft(a)
def intt(a) -> None:
if len(a) <= 1: return
_ifft(a)
iv = pow(len(a), MOD - 2, MOD)
for i, x in enumerate(a): a[i] = x * iv % MOD
def multiply(s: list, t: list) -> list:
n, m = len(s), len(t)
l = n + m - 1
if min(n, m) <= 60:
a = [0] * l
for i, x in enumerate(s):
for j, y in enumerate(t):
a[i + j] += x * y
return [x % MOD for x in a]
z = 1 << (l - 1).bit_length()
a = s + [0] * (z - n)
b = t + [0] * (z - m)
_fft(a)
_fft(b)
for i, x in enumerate(b): a[i] = a[i] * x % MOD
_ifft(a)
a[l:] = []
iz = pow(z, MOD - 2, MOD)
return [x * iz % MOD for x in a]
def pow2(s: list) -> list:
n = len(s)
l = (n << 1) - 1
if n <= 60:
a = [0] * l
for i, x in enumerate(s):
for j, y in enumerate(s):
a[i + j] += x * y
return [x % MOD for x in a]
z = 1 << (l - 1).bit_length()
a = s + [0] * (z - n)
_fft(a)
for i, x in enumerate(a): a[i] = x * x % MOD
_ifft(a)
a[l:] = []
iz = pow(z, MOD - 2, MOD)
return [x * iz % MOD for x in a]
def ntt_doubling(a: list) -> None:
M = len(a)
b = a[:]
intt(b)
r = 1
zeta = pow(3, (MOD - 1) // (M << 1), MOD)
for i, x in enumerate(b):
b[i] = x * r % MOD
r = r * zeta % MOD
ntt(b)
a += b
# https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
def shrink(a: list) -> None:
while a and not a[-1]: a.pop()
def fps_add(a: list, b: list) -> list:
if len(a) < len(b):
res = b[::]
for i, x in enumerate(a): res[i] += x
else:
res = a[::]
for i, x in enumerate(b): res[i] += x
return [x % MOD for x in res]
def fps_add_scalar(a: list, k: int) -> list:
res = a[:]
res[0] = (res[0] + k) % MOD
return res
def fps_sub(a: list, b: list) -> list:
if len(a) < len(b):
res = b[::]
for i, x in enumerate(a): res[i] -= x
res = fps_neg(res)
else:
res = a[::]
for i, x in enumerate(b): res[i] -= x
return [x % MOD for x in res]
def fps_sub_scalar(a: list, k: int) -> list:
return fps_add_scalar(a, -k)
def fps_neg(a: list) -> list:
return [MOD - x if x else 0 for x in a]
def fps_mul_scalar(a: list, k: int) -> list:
return [x * k % MOD for x in a]
def fps_matmul(a: list, b: list) -> list:
'not verified'
return [x * b[i] % MOD for i, x in enumerate(a)]
def fps_div(a: list, b: list) -> list:
if len(a) < len(b): return []
n = len(a) - len(b) + 1
cnt = 0
if len(b) > 64:
return multiply(a[::-1][:n], fps_inv(b[::-1], n))[:n][::-1]
f, g = a[::], b[::]
while g and not g[-1]:
g.pop()
cnt += 1
coef = pow(g[-1], MOD - 2, MOD)
g = fps_mul_scalar(g, coef)
deg = len(f) - len(g) + 1
gs = len(g)
quo = [0] * deg
for i in range(deg)[::-1]:
quo[i] = x = f[i + gs - 1] % MOD
for j, y in enumerate(g):
f[i + j] -= x * y
return fps_mul_scalar(quo, coef) + [0] * cnt
def fps_mod(a: list, b: list) -> list:
res = fps_sub(a, multiply(fps_div(a, b), b))
while res and not res[-1]: res.pop()
return res
def fps_divmod(a: list, b: list):
q = fps_div(a, b)
r = fps_sub(a, multiply(q, b))
while r and not r[-1]: r.pop()
return q, r
def fps_eval(a: list, x: int) -> int:
r = 0; w = 1
for v in a:
r += w * v % MOD
w = w * x % MOD
return r % MOD
def fps_inv(a: list, deg: int=-1) -> list:
# assert(self[0] != 0)
if deg == -1: deg = len(a)
res = [0] * deg
res[0] = pow(a[0], MOD - 2, MOD)
d = 1
while d < deg:
f = [0] * (d << 1)
tmp = min(len(a), d << 1)
f[:tmp] = a[:tmp]
g = [0] * (d << 1)
g[:d] = res[:d]
ntt(f)
ntt(g)
for i, x in enumerate(g): f[i] = f[i] * x % MOD
intt(f)
f[:d] = [0] * d
ntt(f)
for i, x in enumerate(g): f[i] = f[i] * x % MOD
intt(f)
for j in range(d, min(d << 1, deg)):
if f[j]: res[j] = MOD - f[j]
else: res[j] = 0
d <<= 1
return res
def fps_pow(a: list, k: int, deg=-1) -> list:
n = len(a)
if deg == -1: deg = n
if k == 0:
if not deg: return []
ret = [0] * deg
ret[0] = 1
return ret
for i, x in enumerate(a):
if x:
rev = pow(x, MOD - 2, MOD)
ret = fps_mul_scalar(fps_exp(fps_mul_scalar(fps_log(fps_mul_scalar(a, rev)[i:], deg), k), deg), pow(x, k, MOD))
ret[:0] = [0] * (i * k)
if len(ret) < deg:
ret[len(ret):] = [0] * (deg - len(ret))
return ret
return ret[:deg]
if (i + 1) * k >= deg: break
return [0] * deg
def fps_exp(a: list, deg=-1) -> list:
# assert(not self or self[0] == 0)
if deg == -1: deg = len(a)
inv = [0, 1]
def inplace_integral(F: list) -> list:
n = len(F)
while len(inv) <= n:
j, k = divmod(MOD, len(inv))
inv.append((-inv[k] * j) % MOD)
return [0] + [x * inv[i + 1] % MOD for i, x in enumerate(F)]
def inplace_diff(F: list) -> list:
return [x * i % MOD for i, x in enumerate(F) if i]
b = [1, (a[1] if 1 < len(a) else 0)]
c = [1]
z1 = []
z2 = [1, 1]
m = 2
while m < deg:
y = b + [0] * m
ntt(y)
z1 = z2
z = [y[i] * p % MOD for i, p in enumerate(z1)]
intt(z)
z[:m >> 1] = [0] * (m >> 1)
ntt(z)
for i, p in enumerate(z1): z[i] = z[i] * (-p) % MOD
intt(z)
c[m >> 1:] = z[m >> 1:]
z2 = c + [0] * m
ntt(z2)
tmp = min(len(a), m)
x = a[:tmp] + [0] * (m - tmp)
x = inplace_diff(x)
x.append(0)
ntt(x)
for i, p in enumerate(x): x[i] = y[i] * p % MOD
intt(x)
for i, p in enumerate(b):
if not i: continue
x[i - 1] -= p * i % MOD
x += [0] * m
for i in range(m - 1): x[m + i], x[i] = x[i], 0
ntt(x)
for i, p in enumerate(z2): x[i] = x[i] * p % MOD
intt(x)
x.pop()
x = inplace_integral(x)
x[:m] = [0] * m
for i in range(m, min(len(a), m << 1)): x[i] += a[i]
ntt(x)
for i, p in enumerate(y): x[i] = x[i] * p % MOD
intt(x)
b[m:] = x[m:]
m <<= 1
return b[:deg]
def fps_log(a: list, deg=-1) -> list:
# assert(a[0] == 1)
if deg == -1: deg = len(a)
return fps_integral(multiply(fps_diff(a), fps_inv(a, deg))[:deg - 1])
def fps_integral(a: list) -> list:
n = len(a)
res = [0] * (n + 1)
if n: res[1] = 1
for i in range(2, n + 1):
j, k = divmod(MOD, i)
res[i] = (-res[k] * j) % MOD
for i, x in enumerate(a): res[i + 1] = res[i + 1] * x % MOD
return res
def fps_diff(a: list) -> list:
return [i * x % MOD for i, x in enumerate(a) if i]
p1, p2, q1, q2, T = map(int, readline().split())
P = p1 * pow(p2, MOD - 2, MOD) % MOD
Q = q1 * pow(q2, MOD - 2, MOD) % MOD
G = [0]*(T+2)
G[2] = 1
for i in range(1, T+2):
G[i] += G[i-1]
for i in range(1, T+2):
G[i] = (G[i] + G[i-1]) % MOD
for i in range(1, T+2):
G[i] = (G[i] + G[i-1]) % MOD
G = [pow(Q, g, MOD) for g in G]
F = fps_inv(fps_sub([1+P], fps_mul_scalar(G, P)))
print(F[T+1]*pow(P, MOD-2, MOD)%MOD)
tpyneriver