結果
問題 | No.890 移調の限られた旋法 |
ユーザー |
![]() |
提出日時 | 2024-04-10 08:56:33 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 452 ms / 2,000 ms |
コード長 | 5,308 bytes |
コンパイル時間 | 216 ms |
コンパイル使用メモリ | 82,360 KB |
実行使用メモリ | 172,544 KB |
最終ジャッジ日時 | 2024-10-02 10:41:05 |
合計ジャッジ時間 | 9,318 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
def Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=None):self.p=pself.e=eif self.e==None:self.mod=self.pelse:self.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:#assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]if self.e==None:for i in range(1,N+1):self.factorial.append(self.factorial[-1]*i%self.mod)else:self.cnt=[0]*(N+1)for i in range(1,N+1):self.cnt[i]=self.cnt[i-1]ii=iwhile ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append(self.factorial[-1]*ii%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Build_Inverse(self,N):self.inverse=[None]*(N+1)assert self.p>Nself.inverse[1]=1for n in range(2,N+1):if n%self.p==0:continuea,b=divmod(self.mod,n)self.inverse[n]=(-a*self.inverse[b])%self.moddef Inverse(self,n):return self.inverse[n]def Fact(self,N):if N<0:return 0retu=self.factorial[N]if self.e!=None and self.cnt[N]:retu*=pow(self.p,self.cnt[N],self.mod)%self.modretu%=self.modreturn retudef Fact_Inve(self,N):if self.e!=None and self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.modif self.e!=None:cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuimport mathclass Prime:def __init__(self,N):assert N<=10**8self.smallest_prime_factor=[None]*(N+1)for i in range(2,N+1,2):self.smallest_prime_factor[i]=2n=int(N**.5)+1for p in range(3,n,2):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pfor i in range(p**2,N+1,2*p):if self.smallest_prime_factor[i]==None:self.smallest_prime_factor[i]=pfor p in range(n,N+1):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pself.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]def Factorize(self,N):assert N>=1factors=defaultdict(int)if N<=len(self.smallest_prime_factor)-1:while N!=1:factors[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]else:for p in self.primes:while N%p==0:N//=pfactors[p]+=1if N<p*p:if N!=1:factors[N]+=1breakif N<=len(self.smallest_prime_factor)-1:while N!=1:factors[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]breakelse:if N!=1:factors[N]+=1return factorsdef Divisors(self,N):assert N>0divisors=[1]for p,e in self.Factorize(N).items():pow_p=[1]for _ in range(e):pow_p.append(pow_p[-1]*p)divisors=[i*j for i in divisors for j in pow_p]return divisorsdef Is_Prime(self,N):return N==self.smallest_prime_factor[N]def Totient(self,N):for p in self.Factorize(N).keys():N*=p-1N//=preturn Ndef Mebius(self,N):fact=self.Factorize(N)for e in fact.values():if e>=2:return 0else:if len(fact)%2==0:return 1else:return -1N,K=map(int,input().split())mod=10**9+7MD=MOD(mod)MD.Build_Fact(N)cnt=[0]*(N+1)for i in range(1,N+1):g=math.gcd(N,i)n=N//gif K%n==0:cnt[i]=MD.Comb(g,K//n)Pr=Prime(N)for p in Pr.primes:for i in range(N//p,0,-1):cnt[i*p]-=cnt[i]cnt[i*p]%=modans=sum(cnt[:N])%modprint(ans)