結果

問題 No.890 移調の限られた旋法
ユーザー vwxyzvwxyz
提出日時 2024-04-10 08:56:33
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 452 ms / 2,000 ms
コード長 5,308 bytes
コンパイル時間 216 ms
コンパイル使用メモリ 82,360 KB
実行使用メモリ 172,544 KB
最終ジャッジ日時 2024-10-02 10:41:05
合計ジャッジ時間 9,318 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 42 ms
53,888 KB
testcase_01 AC 40 ms
53,888 KB
testcase_02 AC 38 ms
53,504 KB
testcase_03 AC 39 ms
53,632 KB
testcase_04 AC 39 ms
53,504 KB
testcase_05 AC 39 ms
53,632 KB
testcase_06 AC 39 ms
53,376 KB
testcase_07 AC 38 ms
53,888 KB
testcase_08 AC 39 ms
53,632 KB
testcase_09 AC 43 ms
53,760 KB
testcase_10 AC 40 ms
53,888 KB
testcase_11 AC 39 ms
53,760 KB
testcase_12 AC 39 ms
53,632 KB
testcase_13 AC 452 ms
172,544 KB
testcase_14 AC 427 ms
172,288 KB
testcase_15 AC 429 ms
172,288 KB
testcase_16 AC 452 ms
172,160 KB
testcase_17 AC 395 ms
162,944 KB
testcase_18 AC 420 ms
163,316 KB
testcase_19 AC 252 ms
134,784 KB
testcase_20 AC 203 ms
112,512 KB
testcase_21 AC 84 ms
77,568 KB
testcase_22 AC 361 ms
159,744 KB
testcase_23 AC 425 ms
163,840 KB
testcase_24 AC 273 ms
135,296 KB
testcase_25 AC 106 ms
83,456 KB
testcase_26 AC 418 ms
163,968 KB
testcase_27 AC 438 ms
164,352 KB
testcase_28 AC 312 ms
147,712 KB
testcase_29 AC 225 ms
123,392 KB
testcase_30 AC 392 ms
163,468 KB
testcase_31 AC 273 ms
134,016 KB
testcase_32 AC 390 ms
161,956 KB
testcase_33 AC 410 ms
162,944 KB
testcase_34 AC 408 ms
162,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod

    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu
import math

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

N,K=map(int,input().split())
mod=10**9+7
MD=MOD(mod)
MD.Build_Fact(N)
cnt=[0]*(N+1)
for i in range(1,N+1):
    g=math.gcd(N,i)
    n=N//g
    if K%n==0:
        cnt[i]=MD.Comb(g,K//n)
Pr=Prime(N)
for p in Pr.primes:
    for i in range(N//p,0,-1):
        cnt[i*p]-=cnt[i]
        cnt[i*p]%=mod
ans=sum(cnt[:N])%mod
print(ans)
0