結果

問題 No.900 aδδitivee
ユーザー vwxyzvwxyz
提出日時 2024-04-11 16:31:33
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,307 ms / 2,000 ms
コード長 15,414 bytes
コンパイル時間 2,158 ms
コンパイル使用メモリ 82,476 KB
実行使用メモリ 152,176 KB
最終ジャッジ日時 2024-04-11 16:32:05
合計ジャッジ時間 29,514 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 41 ms
56,292 KB
testcase_01 AC 41 ms
55,344 KB
testcase_02 AC 56 ms
67,240 KB
testcase_03 AC 54 ms
67,652 KB
testcase_04 AC 56 ms
68,652 KB
testcase_05 AC 53 ms
66,820 KB
testcase_06 AC 56 ms
67,848 KB
testcase_07 AC 1,229 ms
149,708 KB
testcase_08 AC 1,245 ms
150,116 KB
testcase_09 AC 1,257 ms
149,636 KB
testcase_10 AC 1,287 ms
150,108 KB
testcase_11 AC 1,188 ms
149,588 KB
testcase_12 AC 1,213 ms
147,744 KB
testcase_13 AC 1,233 ms
149,484 KB
testcase_14 AC 1,248 ms
149,596 KB
testcase_15 AC 1,272 ms
152,176 KB
testcase_16 AC 1,307 ms
149,600 KB
testcase_17 AC 1,234 ms
149,176 KB
testcase_18 AC 1,252 ms
149,640 KB
testcase_19 AC 1,167 ms
149,440 KB
testcase_20 AC 1,237 ms
149,540 KB
testcase_21 AC 1,255 ms
149,256 KB
testcase_22 AC 924 ms
141,196 KB
testcase_23 AC 908 ms
141,260 KB
testcase_24 AC 866 ms
141,080 KB
testcase_25 AC 923 ms
141,092 KB
testcase_26 AC 868 ms
140,932 KB
testcase_27 AC 910 ms
141,068 KB
testcase_28 AC 908 ms
140,984 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class Graph:
    def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph!=None:
            self.graph=graph
            """
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
            """
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu
class Lazy_Segment_Tree:
    def __init__(self,N,f,e,f_act,e_act,operate,lst=None):
        self.N=N
        self.f=f
        self.e=e
        self.f_act=f_act
        self.e_act=e_act
        self.operate=operate
        self.segment_tree=[self.e]*(self.N+self.N)
        self.segment_tree_act=[self.e_act]*(self.N+self.N)
        if lst!=None:
            for i,x in enumerate(lst):
                self.segment_tree[i+self.N]=x
            for i in range(self.N-1,0,-1):
                self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
            self.segment_tree_act=[self.e_act]*(self.N+self.N)

    def __getitem__(self,i):
        if type(i) is int:
            if -self.N<=i<0:
                i+=self.N*2
            elif 0<=i<self.N:
                i+=self.N
            else:
                raise IndexError("list index out of range")
            self.Propagate_Above(i)
            self.Recalculate_Above(i)
            return self.Operate_At(i)
        else:
            a,b,c=i.start,i.stop,i.step
            if a==None or a<-self.N:
                a=self.N
            elif self.N<=a:
                a=self.N*2
            elif a<0:
                a+=self.N*2
            else:
                a+=self.N
            if b==None or self.N<=b:
                b=self.N*2
            elif b<-self.N:
                b=self.N
            elif b<0:
                b+=self.N*2
            else:
                b+=self.N
            return self.segment_tree[slice(a,b,c)]

    def __setitem__(self,i,x):
        if -self.N<=i<0:
            i+=self.N*2
        elif 0<=i<self.N:
            i+=self.N
        else:
            raise IndexError("list index out of range")
        self.Propagate_Above(i)
        self.segment_tree[i]=x
        self.segment_tree_act[i]=self.e_act
        self.Recalculate_Above(i)

    def Operate_At(self,i):
        return self.operate(self.segment_tree[i],self.segment_tree_act[i])

    def Propagate_At(self,i):
        self.segment_tree[i]=self.Operate_At(i)
        self.segment_tree_act[i<<1]=self.f_act(self.segment_tree_act[i<<1],self.segment_tree_act[i])
        self.segment_tree_act[i<<1|1]=self.f_act(self.segment_tree_act[i<<1|1],self.segment_tree_act[i])
        self.segment_tree_act[i]=self.e_act

    def Propagate_Above(self,i):
        H=i.bit_length()-1
        for h in range(H,0,-1):
            self.Propagate_At(i>>h)

    def Recalculate_Above(self,i):
        while i>1:
            i>>=1
            self.segment_tree[i]=self.f(self.Operate_At(i<<1),self.Operate_At(i<<1|1))

    def Build(self,lst):
        for i,x in enumerate(lst):
            self.segment_tree[i+self.N]=x
        for i in range(self.N-1,0,-1):
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
        self.segment_tree_act=[self.e_act]*(self.N+self.N)

    def Fold(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        self.Propagate_Above(L//(L&-L))
        self.Propagate_Above(R//(R&-R)-1)
        vL=self.e
        vR=self.e
        while L<R:
            if L&1:
                vL=self.f(vL,self.Operate_At(L))
                L+=1
            if R&1:
                R-=1
                vR=self.f(self.Operate_At(R),vR)
            L>>=1
            R>>=1
        return self.f(vL,vR)

    def Fold_Index(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        if L==R:
            return None
        x=self.Fold(L-self.N,R-self.N)
        while L<R:
            if L&1:
                if self.segment_tree[L]==x:
                    i=L
                    break
                L+=1
            if R&1:
                R-=1
                if self.segment_tree[R]==x:
                    i=R
                    break
            L>>=1
            R>>=1
        while i<self.N:
            if self.segment_tree[i]==self.segment_tree[i<<1]:
                i<<=1
            else:
                i<<=1
                i|=1
        i-=self.N
        return i

    def Operate_Range(self,a,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        L0=L//(L&-L)
        R0=R//(R&-R)-1
        self.Propagate_Above(L0)
        self.Propagate_Above(R0)
        while L<R:
            if L&1:
                self.segment_tree_act[L]=self.f_act(self.segment_tree_act[L],a)
                L+=1
            if R&1:
                R-=1
                self.segment_tree_act[R]=self.f_act(self.segment_tree_act[R],a)
            L>>=1
            R>>=1
        self.Recalculate_Above(L0)
        self.Recalculate_Above(R0)

    def Update(self):
        for i in range(1,self.N):
            self.Propagate_At(i)
        for i in range(self.N,self.N*2):
            self.segment_tree[i]=self.Operate_At(i)
            self.segment_tree_act[i]=self.e_act
        for i in range(self.N-1,0,-1):
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])

    def Bisect_Right(self,L=None,f=None):
        if L==self.N:
            return self.N
        if L==None:
            L=0
        L+=self.N
        self.Propagate_Above(L//(L&-L))
        self.Propagate_Above(self.N//(self.N&-self.N)-1)
        l,r=L,self.N*2
        vl=self.e
        vr=self.e
        while l<r:
            if l&1:
                vl=self.f(vl,self.Operate_At(l))
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.Operate_At(r),vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return self.N
        v=self.e
        self.Propagate_Above(L)
        while True:
            while L%2==0:
                L>>=1
            vv=self.f(v,self.Operate_At(L))
            if f(vv):
                v=vv
                L+=1
            else:
                while L<self.N:
                    self.Propagate_At(L)
                    L<<=1
                    vv=self.f(v,self.Operate_At(L))
                    if f(vv):
                        v=vv
                        L+=1
                return L-self.N

    def Bisect_Left(self,R=None,f=None):
        if R==0:
            return 0
        if R==None:
            R=self.N
        R+=self.N
        self.Propagate_Above(self.N//(self.N&-self.N))
        self.Propagate_Above(R//(R&-R)-1)
        vl=self.e
        vr=self.e
        l,r=self.N,R
        while l<r:
            if l&1:
                vl=self.f(vl,self.Operate_At(l))
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.Operate_At(r),vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return 0
        v=self.e
        self.Propagate_Above(R-1)
        while True:
            R-=1
            while R>1 and R%2:
                R>>=1
            vv=self.f(self.Operate_At(R),v)
            if f(vv):
                v=vv
            else:
                while R<self.N:
                    self.Propagate_At(R)
                    R=(R<<1)|1
                    vv=self.f(self.Operate_At(R),v)
                    if f(vv):
                        v=vv
                        R-=1
                return R+1-self.N

    def __str__(self):
        import copy
        segment_tree=copy.deepcopy(self.segment_tree)
        segment_tree_act=copy.deepcopy(self.segment_tree_act)
        for i in range(1,self.N):
            segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
            segment_tree_act[i<<1]=self.f_act(segment_tree_act[i<<1],segment_tree_act[i])
            segment_tree_act[i<<1|1]=self.f_act(segment_tree_act[i<<1|1],segment_tree_act[i])
            segment_tree_act[i]=self.e_act
        for i in range(self.N,self.N*2):
            segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
            segment_tree_act[i]=self.e_act
        for i in range(self.N-1,0,-1):
            segment_tree[i]=self.f(segment_tree[i<<1],segment_tree[i<<1|1])
        return "["+", ".join(map(str,[self.operate(x,a) for x,a in zip(segment_tree[self.N:],segment_tree_act[self.N:])]))+"]"

N=int(input())
edges=[]
for i in range(N-1):
    u,v,w=map(int,input().split())
    edges.append((u,v,w))
G=Graph(N,edges=edges,weighted=True)
tour,parents=G.SIV_DFS(0,euler_tour=True,parents=True)
in_idx=[None]*N
out_idx=[None]*N
for i in range(2*N):
    if tour[i]>=0:
        in_idx[tour[i]]=i
    else:
        out_idx[~tour[i]]=i
def f(tpl0,tpl1):
    s0,c0=tpl0
    s1,c1=tpl1
    return s0+s1,c0+c1
e=(0,0)
def f_act(a,b):
    return a+b
e_act=0
def operate(tpl,a):
    s,c=tpl
    return s+c*a,c
lst=[None]*2*(N-1)
for x,y,w in edges:
    if parents[x]==y:
        continue
    lst[in_idx[y]-1]=(w,1)
    lst[out_idx[y]-1]=(-w,-1)
LST=Lazy_Segment_Tree(2*(N-1),f,e,f_act,e_act,operate,lst)
Q=int(input())
for q in range(Q):
    query=tuple(map(int,input().split()))
    if query[0]==1:
        _,a,x=query
        LST.Operate_Range(x,in_idx[a],out_idx[a]-1)
    else:
        _,b=query
        ans=LST.Fold(0,in_idx[b])[0]
        print(ans)
0