結果

問題 No.2720 Sum of Subarray of Subsequence of...
ユーザー Challestend Rehtorbegnaro
提出日時 2024-04-11 18:27:16
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 616 ms / 4,000 ms
コード長 5,518 bytes
コンパイル時間 543 ms
コンパイル使用メモリ 58,796 KB
実行使用メモリ 37,956 KB
最終ジャッジ日時 2024-10-02 21:41:03
合計ジャッジ時間 7,964 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <cstdio>
#include <algorithm>
#include <set>
#include <vector>
#define limit 524288
#define maxlog 20
#define mod 998244353
#define maxn 100000
namespace cltstream
{
#define size 1048576
char cltin[size + 1], *ih = cltin, *it = cltin;
inline char gc()
{
#ifdef ONLINE_JUDGE
if (ih == it)
{
it = (ih = cltin) + fread(cltin, 1, size, stdin);
if (ih == it)
return EOF;
}
return *ih++;
#else
return getchar();
#endif
}
char cltout[size + 1], *oh = cltout, *ot = cltout + size;
inline void pc(char c)
{
if (oh == ot)
{
fwrite(cltout, 1, size, stdout);
oh = cltout;
}
*oh++ = c;
}
#define clop() fwrite(cltstream::cltout, 1, cltstream::oh - cltstream::cltout, stdout), cltstream::oh = cltstream::cltout
#undef size
template <typename _tp>
inline void read(_tp& x)
{
char c = gc();
for (; c != 45 && (c < 48 || c > 57) && c != EOF; c = gc());
int sgn = c == 45 ? c = gc(), -1 : 1;
for (x = 0; c >= 48 && c <= 57 && c != EOF; x = (x << 3) + (x << 1) + (c ^ 48), c = gc());
x *= sgn;
}
template <typename _tp>
inline void write(_tp x, char text = -1)
{
if (x < 0)
pc(45), x = -x;
if (!x)
pc(48);
else
{
int digit[22];
for (digit[0] = 0; x; digit[++digit[0]] = x % 10, x /= 10);
for (; digit[0]; pc(digit[digit[0]--] ^ 48));
}
if (text >= 0)
pc(text);
}
inline void put(char str[], char text = -1)
{
for (int cur = 0; str[cur]; pc(str[cur++]));
if (text >= 0)
pc(text);
}
}
int unit[2][24];
int inv[limit], fac[limit], fav[limit];
int rev[limit];
inline int add(int a, int b) {
return a + b < mod ? a + b : a + b - mod;
}
inline int sub(int a, int b) {
return a - b >= 0 ? a - b : a - b + mod;
}
inline int pow(int a, int n) {
int res = 1;
for (; n; n >>= 1, a = 1LL * a * a % mod)
if (n & 1)
res = 1LL * res * a % mod;
return res;
}
inline int C(int n, int m) {
if (m >= 0 && m <= n)
return 1LL * fac[n] * fav[m] % mod * fav[n - m] % mod;
else
return 0;
}
inline void InitIntUnit() {
unit[0][23] = pow(3, 119);
unit[1][23] = pow(332748118, 119);
for(int i = 0; i < 2; ++i)
for(int j = 22; j >= 0; --j)
unit[i][j] = 1LL * unit[i][j + 1] * unit[i][j + 1] % mod;
}
inline void InitFac() {
inv[1] = 1;
for (int i = 2; i < limit; ++i)
inv[i] = sub(0, 1LL * (mod / i) * inv[mod % i] % mod);
fac[0] = fav[0] = 1;
for (int i = 1; i < limit; ++i) {
fac[i] = 1LL * fac[i - 1] * i % mod;
fav[i] = 1LL * fav[i - 1] * inv[i] % mod;
}
}
inline void Derivative(int F[], int n, int G[]) {
for (int i = 0; i < n; ++i)
G[i] = 1LL * (i + 1) * F[i + 1] % mod;
G[n] = 0;
}
inline void Integration(int F[], int n, int G[], int C) {
for (int i = n + 1; i > 0; --i)
G[i] = 1LL * inv[i] * F[i - 1] % mod;
G[0] = C;
}
inline void NTT(int F[], int N, int tp, int A[]) {
for (int i = 0; i < N; ++i)
A[i] = F[rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (N >> 1) : 0)];
for (int k = 1, p = 1; p < N; ++k, p <<= 1)
for (int i = 0; i < N; i += p << 1)
for (int j = i, tmp = 1; j < i + p; ++j, tmp = 1LL * tmp * unit[tp][k] % mod) {
int x = A[j], y = 1LL * A[j + p] * tmp % mod;
A[j] = add(x, y);
A[j + p] = sub(x, y);
}
if (tp == 1) {
int v = pow(N, mod - 2);
for (int i = 0; i < N; ++i)
A[i] = 1LL * A[i] * v % mod;
}
}
inline void Prod(int F[], int n, int G[], int m, int H[]) {
static int A[limit], B[limit], C[limit];
int N = 1;
for (; N < n + m + 1; N <<= 1);
for (int i = n + 1; i < N; ++i)
F[i] = 0;
for (int i = m + 1; i < N; ++i)
G[i] = 0;
NTT(F, N, 0, A);
NTT(G, N, 0, B);
for (int i = 0; i < N; ++i)
C[i] = 1LL * A[i] * B[i] % mod;
NTT(C, N, 1, H);
for (int i = n + m + 1; i < N; ++i)
H[i] = 0;
}
inline void Inv(int F[], int n, int G[]) {
static int tmp[limit], res[limit];
res[0] = pow(F[0], mod - 2);
for (int i = 1; i - 1 < n; i <<= 1) {
for (int j = 0; j < 2 * i; ++j)
tmp[j] = F[j];
Prod(tmp, 2 * i - 1, res, i - 1, tmp);
for (int j = 0; j < 2 * i; ++j)
tmp[j] = sub(0, tmp[j]);
tmp[0] = add(tmp[0], 2);
Prod(tmp, 2 * i - 1, res, i - 1, res);
}
for (int i = 0; i <= n; ++i)
G[i] = res[i];
}
int n, m;
int a[maxn + 5];
char s[maxn + 5];
int cnt[maxn + 5];
int f[limit], g[limit], h[limit];
int pos[limit], neg[limit], invneg[limit], ans[limit];
void dfs(int arr[], int cur, int l, int r) {
if (l < r) {
int mid = (l + r) >> 1;
dfs(arr, cur << 1, l, mid);
dfs(arr, cur << 1 | 1, mid + 1, r);
f[0] = 1;
for (int i = l; i <= mid; ++i)
f[i - l + 1] = arr[i];
g[0] = 1;
for (int i = mid + 1; i <= r; ++i)
g[i - mid] = arr[i];
Prod(f, mid - l + 1, g, r - mid, h);
for (int i = l; i <= r; ++i)
arr[i] = h[i - l + 1];
}
}
int main()
{
InitIntUnit();
InitFac();
cltstream::read(n);
cltstream::read(m);
for (int i = 1; i <= n; ++i)
cltstream::read(a[i]);
for (int i = 1; i <= m; ++i)
for (; s[i] != 'a' && s[i] != 's'; s[i] = cltstream::gc());
for (int i = m, j = 0; i >= 0; j += (s[i] == 's'), --i) {
++cnt[j];
--cnt[j + 1];
}
int poslen = 0;
for (int i = 0; i <= m + 1; ++i)
for (int j = 1; j <= cnt[i]; ++j)
pos[++poslen] = sub(0, i);
dfs(pos, 1, 1, poslen);
pos[0] = 1;
int neglen = 0;
for (int i = 0; i <= m + 1; ++i)
for (int j = 1; j <= -cnt[i]; ++j)
neg[++neglen] = sub(0, i);
dfs(neg, 1, 1, neglen);
neg[0] = 1;
Inv(neg, n, invneg);
Prod(pos, poslen, invneg, n, ans);
int sum = 0;
for (int i = 1; i <= n; ++i)
sum = add(sum, 1LL * ans[i - 1] * ans[n - i] % mod * a[i] % mod);
cltstream::write(sum);
clop();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0