結果

問題 No.2724 Coprime Game 1
ユーザー 👑 Nachia
提出日時 2024-04-12 21:32:55
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 66 ms / 2,000 ms
コード長 3,702 bytes
コンパイル時間 1,380 ms
コンパイル使用メモリ 105,468 KB
最終ジャッジ日時 2025-02-21 00:08:19
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 7
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include <queue>
#include <array>
#include <cmath>
#include <atcoder/modint>
#include <cassert>
namespace nachia{
namespace prime_sieve_explicit_internal{
std::vector<bool> isprime = { false }; // a[x] := isprime(2x+1)
void CalcIsPrime(int z){
if((int)isprime.size() *2+1 < z+1){
int new_z = isprime.size();
while(new_z*2+1 < z+1) new_z *= 2;
z = new_z-1;
isprime.resize(z+1, true);
for(int i=1; i*(i+1)*2<=z; i++) if(isprime[i]){
for(int j=i*(i+1)*2; j<=z; j+=i*2+1) isprime[j] = false;
}
}
}
std::vector<int> prime_list = {2};
int prime_list_max = 0;
void CalcPrimeList(int z){
while((int)prime_list.size() < z){
if((int)isprime.size() <= prime_list_max + 1) CalcIsPrime(prime_list_max * 2 + 10);
for(int p=prime_list_max+1; p<(int)isprime.size(); p++){
if(isprime[p]) prime_list.push_back(p*2+1);
}
prime_list_max = isprime.size() - 1;
}
}
void CalcPrimeListUntil(int z){
if(prime_list_max < z){
CalcIsPrime(z);
for(int p=prime_list_max+1; p<(int)isprime.size(); p++){
if(isprime[p]) prime_list.push_back(p*2+1);
}
prime_list_max = isprime.size() - 1;
}
}
}
bool IsprimeExplicit(int n){
using namespace prime_sieve_explicit_internal;
if(n == 2) return true;
if(n % 2 == 0) return false;
CalcIsPrime(n);
return isprime[(n-1)/2];
}
int NthPrimeExplicit(int n){
using namespace prime_sieve_explicit_internal;
CalcPrimeList(n);
return prime_list[n];
}
int PrimeCountingExplicit(int n){
using namespace prime_sieve_explicit_internal;
if(n < 2) return 0;
CalcPrimeListUntil(n);
auto res = std::upper_bound(prime_list.begin(), prime_list.end(), n) - prime_list.begin();
return (int)res;
}
// [l, r)
std::vector<bool> SegmentedSieveExplicit(long long l, long long r){
assert(0 <= l); assert(l <= r);
long long d = r - l;
if(d == 0) return {};
std::vector<bool> res(d, true);
for(long long p=2; p*p<=r; p++) if(IsprimeExplicit(p)){
long long il = (l+p-1)/p, ir = (r+p-1)/p;
if(il <= p) il = p;
for(long long i=il; i<ir; i++) res[i*p-l] = false;
}
if(l < 2) for(long long p=l; p<2 && p<r; p++) res[l-p] = false;
return res;
}
} // namespace nachia
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
#define repr(i,n) for(int i=int(n)-1; i>=0; i--)
const i64 INF = 1001001001001001001;
const char* yn(bool x){ return x ? "Yes" : "No"; }
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
template<typename A> using nega_queue = std::priority_queue<A,std::vector<A>,std::greater<A>>;
using Modint = atcoder::static_modint<998244353>;
//#include "nachia/vec.hpp"
using namespace std;
void unit(){
int N; cin >> N;
if(nachia::IsprimeExplicit(N)){ cout << "P\n"; return; }
int n = N/2+1;
int c = N - 1 - nachia::PrimeCountingExplicit(N-1) + nachia::PrimeCountingExplicit(n-1);
cout << (c%2 == 0 ? "K\n" : "P\n");
}
void testcase(){
int T; cin >> T;
rep(t,T) unit();
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
#ifdef NACHIA
int T; cin >> T; for(int t=0; t<T; T!=++t?(cout<<'\n'),0:0)
#endif
testcase();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0