結果
問題 | No.2726 Rooted Tree Nim |
ユーザー | ecottea |
提出日時 | 2024-04-12 21:55:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 190 ms / 2,000 ms |
コード長 | 6,838 bytes |
コンパイル時間 | 4,525 ms |
コンパイル使用メモリ | 264,472 KB |
実行使用メモリ | 35,456 KB |
最終ジャッジ日時 | 2024-10-02 23:15:40 |
合計ジャッジ時間 | 7,004 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 76 ms
5,248 KB |
testcase_02 | AC | 109 ms
8,064 KB |
testcase_03 | AC | 188 ms
35,456 KB |
testcase_04 | AC | 190 ms
35,328 KB |
testcase_05 | AC | 104 ms
17,460 KB |
testcase_06 | AC | 104 ms
17,332 KB |
testcase_07 | AC | 122 ms
17,664 KB |
testcase_08 | AC | 125 ms
17,664 KB |
testcase_09 | AC | 87 ms
6,784 KB |
testcase_10 | AC | 91 ms
6,728 KB |
testcase_11 | AC | 90 ms
8,192 KB |
testcase_12 | AC | 125 ms
16,000 KB |
testcase_13 | AC | 91 ms
6,800 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左) int DY[4] = {0, 1, 0, -1}; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #endif //【グラフの入力】O(n + m) /* * (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す. * * n : グラフの頂点の数 * m : グラフの辺の数(省略すれば n-1) * directed : 有向グラフか(省略すれば false) * zero_indexed : 入力が 0-indexed か(省略すれば false) */ Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bi Graph g(n); if (m == -1) m = n - 1; rep(j, m) { int a, b; cin >> a >> b; if (!zero_indexed) { --a; --b; } g[a].push_back(b); if (!directed && a != b) g[b].push_back(a); } return g; } //【根付き木の頂点の深さ】O(n) /* * 各 s∈[0..n) について,r を根とする木 g の頂点 s の深さを格納したリストを返す. * s の深さとは,根から s までの辺の本数のことである. */ vi depth_of_tree(const Graph& g, int r) { // verify : https://algo-method.com/tasks/529 int n = sz(g); vi d(n); function<void(int, int)> dfs = [&](int s, int p) { repe(t, g[s]) { if (t == p) continue; d[t] = d[s] + 1; dfs(t, s); } return d[s]; }; dfs(r, -1); return d; } void Main() { int n; ll k; cin >> n >> k; auto g = read_Graph(n); vl a(n); cin >> a; auto dep = depth_of_tree(g, 0); ll res = 0; rep(i, n) { if (dep[i] & 1) { res ^= a[i] % (k + 1); } } cout << "PK"[res != 0] << "\n"; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int t = 1; cin >> t; // マルチテストケースの場合 while (t--) { dump("------------------------------"); Main(); } }