結果
問題 | No.2724 Coprime Game 1 |
ユーザー | Yakumo221 |
提出日時 | 2024-04-12 22:32:07 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 871 ms / 2,000 ms |
コード長 | 3,003 bytes |
コンパイル時間 | 256 ms |
コンパイル使用メモリ | 82,032 KB |
実行使用メモリ | 225,856 KB |
最終ジャッジ日時 | 2024-10-02 23:30:41 |
合計ジャッジ時間 | 5,835 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 7 |
ソースコード
# library from https://qiita.com/t_fuki/items/7cd50de54d3c5d063b4a def gcd(a, b): while a: a, b = b%a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n%2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in test_numbers: if a == n: continue x = pow(a,d,n) r = 0 if x == 1: continue while x != m: x = pow(x,2,n) r += 1 if x == 1 or r == s: return 0 return 1 def find_prime_factor(n): if n%2 == 0: return 2 m = int(n**0.125)+1 for c in range(1,n): f = lambda a: (pow(a,2,n)+c)%n y = 0 g = q = r = 1 k = 0 while g == 1: x = y while k < 3*r//4: y = f(y) k += 1 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y)%n g = gcd(q,n) k += m k = r r *= 2 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y),n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: return find_prime_factor(g) def factorize(n): res = {} while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す p = find_prime_factor(n) s = 0 while n%p == 0: # nが素因数pで割れる間割り続け、出力に追加 n //= p s += 1 res[p] = s if n > 1: # n>1であればnは素数なので出力に追加 res[n] = 1 return res def primeenumeration(n): # 2<= p<=nを満たす素数nのリストを返す ret = [] if n < 2: return ret ok = [False if i % 2 == 0 else True for i in range(n+1)] ok[1] = False ok[2] = True ret.append(2) for i in range(3, n+1, 2): if ok[i]: ret.append(i) for j in range(i, n+1,i): ok[j] = False return ret from itertools import accumulate from bisect import bisect prime = primeenumeration(1500000) le = len(prime) li = [0 for i in range(3000001)] for p in prime: for i in range(p, 3000001, p): li[i] = 1 acc = list(accumulate(li)) t = int(input()) while t: t -= 1 n = int(input()) if is_prime(n): print("P") continue s = acc[n] lim = n // 2 loc = bisect(prime, lim) s -= bisect(prime, n) - loc s -= 1 # print(s) # s = sum(check) - 1 # print(check[:100]) if s % 2 == 0: print("P") else: print("K")