結果
問題 | No.2724 Coprime Game 1 |
ユーザー | atcoder8 |
提出日時 | 2024-04-12 22:58:55 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 202 ms / 2,000 ms |
コード長 | 7,329 bytes |
コンパイル時間 | 12,549 ms |
コンパイル使用メモリ | 382,644 KB |
実行使用メモリ | 28,672 KB |
最終ジャッジ日時 | 2024-10-02 23:41:59 |
合計ジャッジ時間 | 14,525 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
27,088 KB |
testcase_01 | AC | 51 ms
27,008 KB |
testcase_02 | AC | 59 ms
27,008 KB |
testcase_03 | AC | 180 ms
28,604 KB |
testcase_04 | AC | 199 ms
28,544 KB |
testcase_05 | AC | 200 ms
28,672 KB |
testcase_06 | AC | 135 ms
27,776 KB |
testcase_07 | AC | 202 ms
28,472 KB |
ソースコード
use proconio::input; use crate::eratosthenes_sieve::EratosthenesSieve; const MAX: usize = 3 * 10_usize.pow(6); fn main() { input! { t: usize, nn: [usize; t], } let sieve = EratosthenesSieve::new(MAX); let primes = (2..=MAX) .filter(|&i| sieve.is_prime(i)) .collect::<Vec<usize>>(); let solve = |n: usize| { if sieve.is_prime(n) { return false; } let large_prime_num = primes.partition_point(|&v| v <= n) - primes.partition_point(|&v| v <= n / 2); (n - 1 - large_prime_num) % 2 == 0 }; for &n in &nn { println!("{}", if solve(n) { 'K' } else { 'P' }); } } pub mod eratosthenes_sieve { //! Implements the Sieve of Eratosthenes. //! //! Finds the smallest prime factor of each number placed on the sieve, //! so it can perform Prime Factorization as well as Primality Test. #[derive(Debug, Clone)] pub struct EratosthenesSieve { sieve: Vec<usize>, } impl EratosthenesSieve { /// Constructs a Sieve of Eratosthenes. /// /// # Arguments /// /// * `upper_limit` - The largest number placed on the sieve. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// ``` pub fn new(upper_limit: usize) -> Self { let mut sieve: Vec<usize> = (0..=upper_limit).collect(); for p in (2..).take_while(|&i| i * i <= upper_limit) { if sieve[p] != p { continue; } for i in ((p * p)..=upper_limit).step_by(p) { if sieve[i] == i { sieve[i] = p; } } } Self { sieve } } /// Returns the least prime factor of `n`. /// /// However, if `n` is `1`, then `1` is returned. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.get_least_prime_factor(1), 1); /// assert_eq!(sieve.get_least_prime_factor(2), 2); /// assert_eq!(sieve.get_least_prime_factor(6), 2); /// assert_eq!(sieve.get_least_prime_factor(11), 11); /// assert_eq!(sieve.get_least_prime_factor(27), 3); /// ``` pub fn get_least_prime_factor(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); self.sieve[n] } /// Determines if `n` is prime. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert!(!sieve.is_prime(1)); /// assert!(sieve.is_prime(2)); /// assert!(!sieve.is_prime(6)); /// assert!(sieve.is_prime(11)); /// assert!(!sieve.is_prime(27)); /// ``` pub fn is_prime(&self, n: usize) -> bool { n >= 2 && self.sieve[n] == n } /// Performs prime factorization of `n`. /// /// The result of the prime factorization is returned as a /// list of prime factor and exponent pairs. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(1), vec![]); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]); /// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]); /// ``` pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut factors: Vec<(usize, usize)> = vec![]; while n != 1 { let p = self.sieve[n]; if factors.is_empty() || factors.last().unwrap().0 != p { factors.push((p, 1)); } else { factors.last_mut().unwrap().1 += 1; } n /= p; } factors } /// Creates a list of positive divisors of `n`. /// /// The positive divisors are listed in ascending order. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.create_divisor_list(1), vec![1]); /// assert_eq!(sieve.create_divisor_list(12), vec![1, 2, 3, 4, 6, 12]); /// assert_eq!(sieve.create_divisor_list(19), vec![1, 19]); /// assert_eq!(sieve.create_divisor_list(27), vec![1, 3, 9, 27]); /// ``` pub fn create_divisor_list(&self, n: usize) -> Vec<usize> { assert_ne!(n, 0, "`n` must be at least 1."); let prime_factors = self.prime_factorization(n); let divisor_num: usize = prime_factors.iter().map(|&(_, exp)| exp + 1).product(); let mut divisors = vec![1]; divisors.reserve(divisor_num - 1); for (p, e) in prime_factors { let mut add_divisors = vec![]; add_divisors.reserve(divisors.len() * e); let mut mul = 1; for _ in 1..=e { mul *= p; for &d in divisors.iter() { add_divisors.push(d * mul); } } divisors.append(&mut add_divisors); } divisors.sort_unstable(); divisors } /// Calculates the number of positive divisors of `n`. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.calc_divisor_num(1), 1); /// assert_eq!(sieve.calc_divisor_num(12), 6); /// assert_eq!(sieve.calc_divisor_num(19), 2); /// assert_eq!(sieve.calc_divisor_num(27), 4); /// ``` pub fn calc_divisor_num(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut divisor_num = 1; let mut cur_p = None; let mut cur_exp = 0; while n != 1 { let p = self.sieve[n]; if Some(p) == cur_p { cur_exp += 1; } else { divisor_num *= cur_exp + 1; cur_p = Some(p); cur_exp = 1; } n /= p; } divisor_num *= cur_exp + 1; divisor_num } } }