結果

問題 No.2688 Cell Proliferation (Hard)
ユーザー momoharamomohara
提出日時 2024-04-13 16:19:32
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 639 ms / 4,000 ms
コード長 21,812 bytes
コンパイル時間 5,788 ms
コンパイル使用メモリ 328,236 KB
実行使用メモリ 18,572 KB
最終ジャッジ日時 2024-10-03 00:13:20
合計ジャッジ時間 17,253 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 61 ms
5,248 KB
testcase_04 AC 591 ms
17,500 KB
testcase_05 AC 305 ms
10,876 KB
testcase_06 AC 145 ms
7,020 KB
testcase_07 AC 139 ms
7,104 KB
testcase_08 AC 565 ms
17,020 KB
testcase_09 AC 551 ms
16,744 KB
testcase_10 AC 610 ms
17,888 KB
testcase_11 AC 592 ms
17,388 KB
testcase_12 AC 160 ms
7,476 KB
testcase_13 AC 639 ms
18,440 KB
testcase_14 AC 512 ms
15,932 KB
testcase_15 AC 637 ms
18,572 KB
testcase_16 AC 510 ms
15,852 KB
testcase_17 AC 323 ms
11,308 KB
testcase_18 AC 614 ms
17,964 KB
testcase_19 AC 331 ms
11,348 KB
testcase_20 AC 254 ms
9,832 KB
testcase_21 AC 254 ms
9,824 KB
testcase_22 AC 318 ms
11,168 KB
testcase_23 AC 267 ms
10,148 KB
testcase_24 AC 628 ms
17,788 KB
testcase_25 AC 158 ms
7,392 KB
testcase_26 AC 629 ms
18,120 KB
testcase_27 AC 341 ms
11,532 KB
testcase_28 AC 508 ms
15,836 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <atcoder/all>
#include <bits/stdc++.h>

using namespace std;
using namespace atcoder;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<ll, ll>;
using tp = tuple<ll, ll, ll>;

template <class T>
using vec = vector<T>;
template <class T>
using vvec = vector<vec<T>>;

#define all(hoge) (hoge).begin(), (hoge).end()
#define en '\n'
#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)
#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)
#define REP(i, n) rep(i, 0, n)
#define REP2(i, n) rep2(i, 0, n)

constexpr long long INF = 1LL << 60;
constexpr int INF_INT = 1 << 25;
// constexpr long long MOD = (ll)1e9 + 7;
constexpr long long MOD = 998244353LL;
static const ld pi = 3.141592653589793L;

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

template <class T>
inline bool chmin(T &a, T b) {
    if(a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T>
inline bool chmax(T &a, T b) {
    if(a < b) {
        a = b;
        return true;
    }
    return false;
}

struct Edge {
    int to, rev;
    ll cap;
    Edge(int _to, int _rev, ll _cap) : to(_to), rev(_rev), cap(_cap) {}
};

typedef vector<Edge> Edges;
typedef vector<Edges> Graph;

void add_edge(Graph &G, int from, int to, ll cap, bool revFlag, ll revCap) {
    G[from].push_back(Edge(to, (int)G[to].size(), cap));
    if(revFlag)
        G[to].push_back(Edge(from, (int)G[from].size() - 1, revCap));
}

template <int mod>
struct ModInt {
    int x;

    ModInt() : x(0) {}

    ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= mod)
            x -= mod;
        return *this;
    }

    ModInt &operator-=(const ModInt &p) {
        if((x += mod - p.x) >= mod)
            x -= mod;
        return *this;
    }

    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    ModInt &operator/=(const ModInt &p) {
        *this *= p.inverse();
        return *this;
    }

    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+() const { return ModInt(*this); }

    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

    bool operator==(const ModInt &p) const { return x == p.x; }

    bool operator!=(const ModInt &p) const { return x != p.x; }

    ModInt inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return ModInt(u);
    }

    ModInt pow(int64_t n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1)
                ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }

    friend istream &operator>>(istream &is, ModInt &a) {
        int64_t t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }

    int get() const { return x; }

    static constexpr int get_mod() { return mod; }
};

using mint = ModInt<MOD>;

template <typename mint>
struct NTT {
    static constexpr uint32_t get_pr() {
        uint32_t _mod = mint::get_mod();
        using u64 = uint64_t;
        u64 ds[32] = {};
        int idx = 0;
        u64 m = _mod - 1;
        for(u64 i = 2; i * i <= m; ++i) {
            if(m % i == 0) {
                ds[idx++] = i;
                while(m % i == 0)
                    m /= i;
            }
        }
        if(m != 1)
            ds[idx++] = m;

        uint32_t _pr = 2;
        while(1) {
            int flg = 1;
            for(int i = 0; i < idx; ++i) {
                u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
                while(b) {
                    if(b & 1)
                        r = r * a % _mod;
                    a = a * a % _mod;
                    b >>= 1;
                }
                if(r == 1) {
                    flg = 0;
                    break;
                }
            }
            if(flg == 1)
                break;
            ++_pr;
        }
        return _pr;
    };

    static constexpr uint32_t mod = mint::get_mod();
    static constexpr uint32_t pr = get_pr();
    static constexpr int level = __builtin_ctzll(mod - 1);
    mint dw[level], dy[level];

    void setwy(int k) {
        mint w[level], y[level];
        w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
        y[k - 1] = w[k - 1].inverse();
        for(int i = k - 2; i > 0; --i)
            w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
        dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
        for(int i = 3; i < k; ++i) {
            dw[i] = dw[i - 1] * y[i - 2] * w[i];
            dy[i] = dy[i - 1] * w[i - 2] * y[i];
        }
    }

    NTT() { setwy(level); }

    void fft4(vector<mint> &a, int k) {
        if((int)a.size() <= 1)
            return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        if(k & 1) {
            int v = 1 << (k - 1);
            for(int j = 0; j < v; ++j) {
                mint ajv = a[j + v];
                a[j + v] = a[j] - ajv;
                a[j] += ajv;
            }
        }
        int u = 1 << (2 + (k & 1));
        int v = 1 << (k - 2 - (k & 1));
        mint one = mint(1);
        mint imag = dw[1];
        while(v) {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = j1 + v;
                int j3 = j2 + v;
                for(; j0 < v; ++j0, ++j1, ++j2, ++j3) {
                    mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dw[2], wx = one;
            for(int jh = 4; jh < u;) {
                ww = xx * xx, wx = ww * xx;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for(; j0 < je; ++j0, ++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
                         t3 = a[j2 + v] * wx;
                    mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
                }
                xx *= dw[__builtin_ctzll((jh += 4))];
            }
            u <<= 2;
            v >>= 2;
        }
    }

    void ifft4(vector<mint> &a, int k) {
        if((int)a.size() <= 1)
            return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        int u = 1 << (k - 2);
        int v = 1;
        mint one = mint(1);
        mint imag = dy[1];
        while(u) {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = v + v;
                int j3 = j2 + v;
                for(; j0 < v; ++j0, ++j1, ++j2, ++j3) {
                    mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
                    a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
                    a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dy[2], yy = one;
            u <<= 2;
            for(int jh = 4; jh < u;) {
                ww = xx * xx, yy = xx * imag;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for(; j0 < je; ++j0, ++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
                    a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
                    a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
                }
                xx *= dy[__builtin_ctzll(jh += 4)];
            }
            u >>= 4;
            v <<= 2;
        }
        if(k & 1) {
            u = 1 << (k - 1);
            for(int j = 0; j < u; ++j) {
                mint ajv = a[j] - a[j + u];
                a[j] += a[j + u];
                a[j + u] = ajv;
            }
        }
    }

    void ntt(vector<mint> &a) {
        if((int)a.size() <= 1)
            return;
        fft4(a, __builtin_ctz(a.size()));
    }

    void intt(vector<mint> &a) {
        if((int)a.size() <= 1)
            return;
        ifft4(a, __builtin_ctz(a.size()));
        mint iv = mint(a.size()).inverse();
        for(auto &x : a)
            x *= iv;
    }

    vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
        int l = a.size() + b.size() - 1;
        if(min<int>(a.size(), b.size()) <= 40) {
            vector<mint> s(l);
            for(int i = 0; i < (int)a.size(); ++i)
                for(int j = 0; j < (int)b.size(); ++j)
                    s[i + j] += a[i] * b[j];
            return s;
        }
        int k = 2, M = 4;
        while(M < l)
            M <<= 1, ++k;
        setwy(k);
        vector<mint> s(M);
        for(int i = 0; i < (int)a.size(); ++i)
            s[i] = a[i];
        fft4(s, k);
        if(a.size() == b.size() && a == b) {
            for(int i = 0; i < M; ++i)
                s[i] *= s[i];
        } else {
            vector<mint> t(M);
            for(int i = 0; i < (int)b.size(); ++i)
                t[i] = b[i];
            fft4(t, k);
            for(int i = 0; i < M; ++i)
                s[i] *= t[i];
        }
        ifft4(s, k);
        s.resize(l);
        mint invm = mint(M).inverse();
        for(int i = 0; i < l; ++i)
            s[i] *= invm;
        return s;
    }

    void ntt_doubling(vector<mint> &a) {
        int M = (int)a.size();
        auto b = a;
        intt(b);
        mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
        for(int i = 0; i < M; i++)
            b[i] *= r, r *= zeta;
        ntt(b);
        copy(begin(b), end(b), back_inserter(a));
    }
};

template <typename mint>
struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;

    FPS &operator+=(const FPS &r) {
        if(r.size() > this->size())
            this->resize(r.size());
        for(int i = 0; i < (int)r.size(); i++)
            (*this)[i] += r[i];
        return *this;
    }

    FPS &operator+=(const mint &r) {
        if(this->empty())
            this->resize(1);
        (*this)[0] += r;
        return *this;
    }

    FPS &operator-=(const FPS &r) {
        if(r.size() > this->size())
            this->resize(r.size());
        for(int i = 0; i < (int)r.size(); i++)
            (*this)[i] -= r[i];
        return *this;
    }

    FPS &operator-=(const mint &r) {
        if(this->empty())
            this->resize(1);
        (*this)[0] -= r;
        return *this;
    }

    FPS &operator*=(const mint &v) {
        for(int k = 0; k < (int)this->size(); k++)
            (*this)[k] *= v;
        return *this;
    }

    FPS &operator/=(const FPS &r) {
        if(this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if((int)r.size() <= 64) {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inverse();
            for(auto &x : g)
                x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for(int i = deg - 1; i >= 0; i--) {
                quo[i] = f[i + gs - 1];
                for(int j = 0; j < gs; j++)
                    f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }

    FPS &operator%=(const FPS &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }

    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const {
        FPS ret(this->size());
        for(int i = 0; i < (int)this->size(); i++)
            ret[i] = -(*this)[i];
        return ret;
    }

    void shrink() {
        while(this->size() && this->back() == mint(0))
            this->pop_back();
    }

    FPS rev() const {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }

    FPS dot(FPS r) const {
        FPS ret(min(this->size(), r.size()));
        for(int i = 0; i < (int)ret.size(); i++)
            ret[i] = (*this)[i] * r[i];
        return ret;
    }

    // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
    FPS pre(int sz) const {
        FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
        if((int)ret.size() < sz)
            ret.resize(sz);
        return ret;
    }

    FPS operator>>(int sz) const {
        if((int)this->size() <= sz)
            return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }

    FPS operator<<(int sz) const {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }

    FPS diff() const {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        mint one(1), coeff(1);
        for(int i = 1; i < n; i++) {
            ret[i - 1] = (*this)[i] * coeff;
            coeff += one;
        }
        return ret;
    }

    FPS integral() const {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if(n > 0)
            ret[1] = mint(1);
        auto mod = mint::get_mod();
        for(int i = 2; i <= n; i++)
            ret[i] = (-ret[mod % i]) * (mod / i);
        for(int i = 0; i < n; i++)
            ret[i + 1] *= (*this)[i];
        return ret;
    }

    mint eval(mint x) const {
        mint r = 0, w = 1;
        for(auto &v : *this)
            r += w * v, w *= x;
        return r;
    }

    FPS log(int deg = -1) const {
        assert(!(*this).empty() && (*this)[0] == mint(1));
        if(deg == -1)
            deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    FPS pow(int64_t k, int deg = -1) const {
        const int n = (int)this->size();
        if(deg == -1)
            deg = n;
        if(k == 0) {
            FPS ret(deg);
            if(deg)
                ret[0] = 1;
            return ret;
        }
        for(int i = 0; i < n; i++) {
            if((*this)[i] != mint(0)) {
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if((int)ret.size() < deg)
                    ret.resize(deg, mint(0));
                return ret;
            }
            if(__int128_t(i + 1) * k >= deg)
                return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }

    static void *ntt_ptr;
    static void set_fft();
    FPS &operator*=(const FPS &r);
    void ntt();
    void intt();
    void ntt_doubling();
    static int ntt_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};

template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
    if(!ntt_ptr)
        ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint> &FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint> &r) {
    if(this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    set_fft();
    auto ret = static_cast<NTT<mint> *>(ntt_ptr)->multiply(*this, r);
    return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
    set_fft();
    return static_cast<NTT<mint> *>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
    assert((*this)[0] != mint(0));
    if(deg == -1)
        deg = (int)this->size();
    FormalPowerSeries<mint> res(deg);
    res[0] = {mint(1) / (*this)[0]};
    for(int d = 1; d < deg; d <<= 1) {
        FormalPowerSeries<mint> f(2 * d), g(2 * d);
        for(int j = 0; j < min((int)this->size(), 2 * d); j++)
            f[j] = (*this)[j];
        for(int j = 0; j < d; j++)
            g[j] = res[j];
        f.ntt();
        g.ntt();
        for(int j = 0; j < 2 * d; j++)
            f[j] *= g[j];
        f.intt();
        for(int j = 0; j < d; j++)
            f[j] = 0;
        f.ntt();
        for(int j = 0; j < 2 * d; j++)
            f[j] *= g[j];
        f.intt();
        for(int j = d; j < min(2 * d, deg); j++)
            res[j] = -f[j];
    }
    return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
    using fps = FormalPowerSeries<mint>;
    assert((*this).size() == 0 || (*this)[0] == mint(0));
    if(deg == -1)
        deg = this->size();

    fps inv;
    inv.reserve(deg + 1);
    inv.push_back(mint(0));
    inv.push_back(mint(1));

    auto inplace_integral = [&](fps &F) -> void {
        const int n = (int)F.size();
        auto mod = mint::get_mod();
        while((int)inv.size() <= n) {
            int i = inv.size();
            inv.push_back((-inv[mod % i]) * (mod / i));
        }
        F.insert(begin(F), mint(0));
        for(int i = 1; i <= n; i++)
            F[i] *= inv[i];
    };

    auto inplace_diff = [](fps &F) -> void {
        if(F.empty())
            return;
        F.erase(begin(F));
        mint coeff = 1, one = 1;
        for(int i = 0; i < (int)F.size(); i++) {
            F[i] *= coeff;
            coeff += one;
        }
    };

    fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for(int m = 2; m < deg; m *= 2) {
        auto y = b;
        y.resize(2 * m);
        y.ntt();
        z1 = z2;
        fps z(m);
        for(int i = 0; i < m; ++i)
            z[i] = y[i] * z1[i];
        z.intt();
        fill(begin(z), begin(z) + m / 2, mint(0));
        z.ntt();
        for(int i = 0; i < m; ++i)
            z[i] *= -z1[i];
        z.intt();
        c.insert(end(c), begin(z) + m / 2, end(z));
        z2 = c;
        z2.resize(2 * m);
        z2.ntt();
        fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
        x.resize(m);
        inplace_diff(x);
        x.push_back(mint(0));
        x.ntt();
        for(int i = 0; i < m; ++i)
            x[i] *= y[i];
        x.intt();
        x -= b.diff();
        x.resize(2 * m);
        for(int i = 0; i < m - 1; ++i)
            x[m + i] = x[i], x[i] = mint(0);
        x.ntt();
        for(int i = 0; i < 2 * m; ++i)
            x[i] *= z2[i];
        x.intt();
        x.pop_back();
        inplace_integral(x);
        for(int i = m; i < min<int>(this->size(), 2 * m); ++i)
            x[i] += (*this)[i];
        fill(begin(x), begin(x) + m, mint(0));
        x.ntt();
        for(int i = 0; i < 2 * m; ++i)
            x[i] *= y[i];
        x.intt();
        b.insert(end(b), begin(x) + m, end(x));
    }
    return fps{begin(b), begin(b) + deg};
}

void solve() {
    ll p1, p2, q1, q2, t;
    cin >> p1 >> p2 >> q1 >> q2 >> t;
    mint p = mint(p1) / p2;
    mint q = mint(q1) / q2;

    FormalPowerSeries<mint> g(t + 1, mint(0));
    g[0] = 1;
    rep(i, 1, t + 1) {
        g[i] -= p * q.pow(i * (i - 1) / 2);
    }

    FormalPowerSeries<mint> f = g.inv();
    mint ans = 0;
    REP(i, t + 1) {
        ans += f[i] * q.pow((t - i) * (t - i + 1) / 2);
    }
    cout << ans << en;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    // cout << fixed << setprecision(10);

    // ll t;
    // cin >> t;
    // REP(i, t - 1) {
    //     solve();
    // }

    solve();

    return 0;
}
0