結果

問題 No.2747 Permutation Adjacent Sum
ユーザー ponjuice
提出日時 2024-04-13 18:29:45
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 448 ms / 3,000 ms
コード長 9,581 bytes
コンパイル時間 1,719 ms
コンパイル使用メモリ 112,288 KB
最終ジャッジ日時 2025-02-21 01:14:02
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// O(klogk + √p logp)
#include<iostream>
#include<vector>
#include<cmath>
#include<cassert>
using namespace std;
using ll = long long;
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(ll n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
ll t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
ll get(){
return x;
}
};
using modint = ModInt<998244353>;
template< typename T >
struct Combination {
vector< T > _fact, _rfact, _inv;
Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
_fact[0] = _rfact[sz] = _inv[0] = 1;
for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
_rfact[sz] /= _fact[sz];
for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
}
inline T fact(int k) const { return _fact[k]; }
inline T rfact(int k) const { return _rfact[k]; }
inline T inv(int k) const { return _inv[k]; }
T P(int n, int r) const {
if(r < 0 || n < r) return 0;
return fact(n) * rfact(n - r);
}
T C(int p, int q) const {
if(q < 0 || p < q) return 0;
return fact(p) * rfact(q) * rfact(p - q);
}
T H(int n, int r) const {
if(n < 0 || r < 0) return (0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
template< typename T >
T lagrange_polynomial(const vector< T > &y, ll t) {
int N = y.size() - 1;
Combination< T > comb(N);
if(t <= N) return y[t];
T ret(0);
vector< T > dp(N + 1, 1), pd(N + 1, 1);
for(int i = 0; i < N; i++) dp[i + 1] = dp[i] * (t - i);
for(int i = N; i > 0; i--) pd[i - 1] = pd[i] * (t - i);
for(int i = 0; i <= N; i++) {
T tmp = y[i] * dp[i] * pd[i] * comb.rfact(i) * comb.rfact(N - i);
if((N - i) & 1) ret -= tmp;
else ret += tmp;
}
return ret;
}
namespace FastFourierTransform {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector< C > rts = { {0, 0},
{1, 0} };
vector< int > rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector< C > &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector< ll > multiply(const vector< int > &a, const vector< int > &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector< ll > ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template< typename T >
struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < (int)a.size(); i++) {
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector< C > fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < (int)b.size(); i++) {
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector< T > ret(need);
for(int i = 0; i < need; i++) {
ll aa = llround(fa[i].x);
ll bb = llround(fb[i].x);
ll cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
template< typename T >
T factorial(ll n) {
if(n >= T::get_mod()) return 0;
ArbitraryModConvolution< T > fft;
ll d = 1 << 15;
Combination< T > comb(2 * d);
vector< T > seq({1, d + 1});
seq.reserve(d + 1);
int sz = 1;
while(sz < d) {
vector< T > aux(sz, 1), f(sz * 4), g(sz * 4);
for(int i = 0; i <= sz; i++) {
f[i] = comb.rfact(i) * comb.rfact(sz - i) * seq[i];
if(((sz + i) & 1)) f[i] = -f[i];
}
vector< T > pf(f), as;
as.emplace_back(sz + 1);
as.emplace_back(T(sz) / d);
as.emplace_back(T(sz) / d + sz + 1);
for(int idx = 0; idx < 3; idx++) {
for(int i = 0; i < sz * 4; i++) f[i] = pf[i];
for(int i = 1; i < sz * 2 + 2; i++) g[i] = T(1) / (as[idx] - sz + i - 1);
f = fft.multiply(f, g);
f.resize(sz * 4);
T prod = 1;
for(int i = 0; i <= sz; i++) prod *= as[idx] - i;
for(int i = 0; i <= sz; i++) {
f[sz + i + 1] *= prod;
prod *= as[idx] + i + 1;
prod /= as[idx] - (sz - i);
}
if(idx == 0) {
for(int i = 0; i < sz; i++) aux[i] = f[sz + i + 1];
} else if(idx == 1) {
for(int i = 0; i <= sz; i++) seq[i] *= f[sz + i + 1];
} else {
for(int i = 0; i < sz; i++) aux[i] *= f[sz + i + 1];
}
}
for(auto x : aux) seq.emplace_back(x);
sz <<= 1;
}
T res = 1;
ll l = min(d, (n + 1) / d);
for(ll i = 0; i < l; i++) res *= seq[i];
for(ll i = l * d + 1; i <= n; i++) res *= i;
return res;
}
int main(){
ll n,k;
cin >> n >> k;
ll siz = k + 3;
vector<modint> k1(siz,0 ), k2(siz, 0);
for(int i = 1; i < siz; i++) {
k1[i] = modint(i).pow(k) + k1[i-1];
k2[i] = modint(i).pow(k+1) + k2[i-1];
}
cout << factorial<modint>(n-1) * 2 * (lagrange_polynomial(k1, n) * n - lagrange_polynomial(k2, n)) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0