結果
問題 | No.829 成長関数インフレ中 |
ユーザー | vwxyz |
提出日時 | 2024-04-14 08:36:52 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 6,173 bytes |
コンパイル時間 | 181 ms |
コンパイル使用メモリ | 82,108 KB |
実行使用メモリ | 199,708 KB |
最終ジャッジ日時 | 2024-10-03 05:43:56 |
合計ジャッジ時間 | 11,667 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 42 ms
56,944 KB |
testcase_01 | AC | 41 ms
55,956 KB |
testcase_02 | AC | 38 ms
55,364 KB |
testcase_03 | AC | 39 ms
56,448 KB |
testcase_04 | AC | 41 ms
56,712 KB |
testcase_05 | AC | 41 ms
56,316 KB |
testcase_06 | AC | 39 ms
56,624 KB |
testcase_07 | AC | 39 ms
55,728 KB |
testcase_08 | AC | 37 ms
56,880 KB |
testcase_09 | AC | 39 ms
56,872 KB |
testcase_10 | AC | 44 ms
56,660 KB |
testcase_11 | AC | 43 ms
57,168 KB |
testcase_12 | AC | 101 ms
112,348 KB |
testcase_13 | AC | 51 ms
66,624 KB |
testcase_14 | AC | 75 ms
91,756 KB |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | TLE | - |
testcase_19 | RE | - |
testcase_20 | TLE | - |
testcase_21 | AC | 68 ms
88,480 KB |
ソースコード
from collections import deque import math def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu def FFT(polynomial0,polynomial1,digit=10**5,round_to_int=True): assert digit==0 or round_to_int if len(polynomial0)*len(polynomial1)<=60: polynomial=[0]*(len(polynomial0)+len(polynomial1)-1) for i in range(len(polynomial0)): for j in range(len(polynomial1)): polynomial[i+j]+=polynomial0[i]*polynomial1[j] return polynomial def DFT(polynomial,n,inverse=False): if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) def FFT_(polynomial0,polynomial1,round_to_int=True): N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 n=(N-1).bit_length() polynomial0=polynomial0+[0]*((1<<n)-N0) polynomial1=polynomial1+[0]*((1<<n)-N1) DFT(polynomial0,n) DFT(polynomial1,n) fft=[x*y for x,y in zip(polynomial0,polynomial1)] DFT(fft,n,inverse=True) if round_to_int: fft=[round((fft[i]/(1<<n)).real) for i in range(N)] else: fft=[(fft[i]/(1<<n)).real for i in range(N)] return fft if digit: N0=len(polynomial0) N1=len(polynomial1) N=N0+N1-1 polynomial00,polynomial01=[None]*N0,[None]*N0 polynomial10,polynomial11=[None]*N1,[None]*N1 for i in range(N0): polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit) for i in range(N1): polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit) polynomial=[0]*N for i,x in enumerate(FFT_(polynomial00,polynomial10)): polynomial[i]+=x*(digit**2-digit) for i,x in enumerate(FFT_(polynomial01,polynomial11)): polynomial[i]-=x*(digit-1) for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])): polynomial[i]+=x*digit else: polynomial=FFT_(polynomial0,polynomial1,round_to_int=round_to_int) return polynomial N,B=map(int,input().split()) mod=10**9+7 MD=MOD(mod) MD.Build_Fact(N) C=[0]*N for s in map(int,input().split()): C[s]+=1 cnt=0 queue=[] for s in range(N-1,-1,-1): if C[s]: if queue: c=MD.Fact(cnt+C[s]-1)*MD.Fact_Inve(cnt)%mod queue.append([c*cnt%mod,c*C[s]%mod]) else: queue.append([0,MD.Fact(C[s])]) cnt+=C[s] queue=deque(queue) while len(queue)>=2: queue.append(FFT(queue.popleft(),queue.popleft())) ans=sum(c*s*pow(B,s,mod)for s,c in enumerate(queue[0]))%mod print(ans)