結果
問題 | No.2688 Cell Proliferation (Hard) |
ユーザー | koba-e964 |
提出日時 | 2024-04-15 03:23:04 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 960 ms / 4,000 ms |
コード長 | 10,712 bytes |
コンパイル時間 | 13,411 ms |
コンパイル使用メモリ | 379,784 KB |
実行使用メモリ | 51,200 KB |
最終ジャッジ日時 | 2024-10-04 13:17:31 |
合計ジャッジ時間 | 39,096 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 895 ms
50,992 KB |
testcase_01 | AC | 895 ms
51,072 KB |
testcase_02 | AC | 896 ms
50,976 KB |
testcase_03 | AC | 881 ms
51,072 KB |
testcase_04 | AC | 874 ms
51,072 KB |
testcase_05 | AC | 883 ms
51,176 KB |
testcase_06 | AC | 875 ms
51,180 KB |
testcase_07 | AC | 884 ms
51,020 KB |
testcase_08 | AC | 888 ms
51,072 KB |
testcase_09 | AC | 889 ms
51,028 KB |
testcase_10 | AC | 885 ms
50,900 KB |
testcase_11 | AC | 887 ms
50,996 KB |
testcase_12 | AC | 871 ms
51,080 KB |
testcase_13 | AC | 890 ms
51,072 KB |
testcase_14 | AC | 888 ms
50,952 KB |
testcase_15 | AC | 874 ms
51,072 KB |
testcase_16 | AC | 896 ms
51,032 KB |
testcase_17 | AC | 863 ms
51,076 KB |
testcase_18 | AC | 877 ms
50,888 KB |
testcase_19 | AC | 891 ms
50,900 KB |
testcase_20 | AC | 863 ms
51,072 KB |
testcase_21 | AC | 887 ms
51,072 KB |
testcase_22 | AC | 916 ms
51,032 KB |
testcase_23 | AC | 891 ms
51,200 KB |
testcase_24 | AC | 960 ms
50,968 KB |
testcase_25 | AC | 870 ms
51,120 KB |
testcase_26 | AC | 862 ms
51,048 KB |
testcase_27 | AC | 884 ms
51,072 KB |
testcase_28 | AC | 875 ms
50,976 KB |
ソースコード
use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Computes f^{-1} mod x^{f.len()}. // Reference: https://codeforces.com/blog/entry/56422 // Complexity: O(n log n) // Verified by: https://judge.yosupo.jp/submission/3219 // Depends on: MInt.rs, fft.rs fn fps_inv<P: mod_int::Mod + PartialEq>( f: &[mod_int::ModInt<P>], gen: mod_int::ModInt<P> ) -> Vec<mod_int::ModInt<P>> { let n = f.len(); assert!(n.is_power_of_two()); assert_eq!(f[0], 1.into()); let mut sz = 1; let mut r = vec![mod_int::ModInt::new(0); n]; let mut tmp_f = vec![mod_int::ModInt::new(0); n]; let mut tmp_r = vec![mod_int::ModInt::new(0); n]; r[0] = 1.into(); // Adopts the technique used in https://judge.yosupo.jp/submission/3153 while sz < n { let zeta = gen.pow((P::m() - 1) / sz as i64 / 2); tmp_f[..2 * sz].copy_from_slice(&f[..2 * sz]); tmp_r[..2 * sz].copy_from_slice(&r[..2 * sz]); fft::fft(&mut tmp_r[..2 * sz], zeta, 1.into()); fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into()); let fac = mod_int::ModInt::new(2 * sz as i64).inv().pow(2); for i in 0..2 * sz { tmp_f[i] *= tmp_r[i]; } fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into()); for v in &mut tmp_f[..sz] { *v = 0.into(); } fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into()); for i in 0..2 * sz { tmp_f[i] = -tmp_f[i] * tmp_r[i] * fac; } fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into()); r[sz..2 * sz].copy_from_slice(&tmp_f[sz..2 * sz]); sz *= 2; } r } // https://yukicoder.me/problems/no/2688 (4) // p = P1/P2, q = Q1/Q2 とする。 // 求める答えを f(T) とすると、以下が成立する。 // f(1) - pf(0) = q // f(2) - pf(1) - qpf(0) = q^3 // f(3) - pf(2) - qpf(1) - q^3pf(0) = q^6 // ... // ここから、 f(T) の母関数を F とするとき // F(1 - px - qpx^2 - q^3px^3 - ...) = 1 + qx + q^3x^2 + ... が成立する。 // これは fps_inv で計算できる。 // Tags: fps fn main() { let p1: i64 = get(); let p2: i64 = get(); let q1: i64 = get(); let q2: i64 = get(); let p = MInt::new(p1) * MInt::new(p2).inv(); let q = MInt::new(q1) * MInt::new(q2).inv(); let n: usize = get(); const W: usize = 1 << 20; let mut den = vec![MInt::new(0); W]; let mut num = vec![MInt::new(0); 2 * W]; den[0] += 1; den[1] -= p; num[0] += 1; num[1] += q; let mut cur = q; for i in 2..W { den[i] = den[i - 1] * cur; cur *= q; num[i] = num[i - 1] * cur; } let mut den = fps_inv(&den, MInt::new(3)); den.resize(2 * W, 0.into()); let zeta = MInt::new(3).pow((MOD - 1) / W as i64 / 2); fft::fft(&mut den, zeta, 1.into()); fft::fft(&mut num, zeta, 1.into()); let factor = MInt::new(W as i64 * 2).inv(); for i in 0..2 * W { num[i] *= den[i] * factor; } fft::inv_fft(&mut num, zeta.inv(), 1.into()); println!("{}", num[n]); }