結果
問題 | No.2733 Just K-times TSP |
ユーザー |
![]() |
提出日時 | 2024-04-19 22:13:46 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 160 ms / 2,000 ms |
コード長 | 6,167 bytes |
コンパイル時間 | 2,356 ms |
コンパイル使用メモリ | 206,672 KB |
最終ジャッジ日時 | 2025-02-21 04:26:52 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
#include "bits/stdc++.h"#include <random>#include <chrono>#define ALL(x) (x).begin(), (x).end()#define RALL(x) (x).rbegin(), (x).rend()#define SZ(x) ((lint)(x).size())#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)#define endk '\n'using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedefpair<ld, ld> pld;struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;template<class T> auto add = [](T a, T b) -> T { return a + b; };template<class T> auto mul = [](T a, T b) -> T { return a * b; };template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };template<class T> using V = vector<T>;using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>; using VVVVl = V<V<V<Vl>>>;template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");return os;}template< typename T >istream& operator>>(istream& is, vector< T >& v) {for (T& in : v) is >> in;return is;}template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }template <class T>T div_floor(T a, T b) {if (b < 0) a *= -1, b *= -1;return a >= 0 ? a / b : (a + 1) / b - 1;}template <class T>T div_ceil(T a, T b) {if (b < 0) a *= -1, b *= -1;return a > 0 ? (a - 1) / b + 1 : a / b;}template <class F> struct rec {F f;rec(F&& f_) : f(std::forward<F>(f_)) {}template <class... Args> auto operator()(Args &&... args) const {return f(*this, std::forward<Args>(args)...);}};lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }lint digit(lint a) { return (lint)log10(a); }lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => truevoid Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18;lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }struct Edge {lint from, to;lint cost;Edge() {}Edge(lint u, lint v, lint c) {cost = c;from = u;to = v;}bool operator<(const Edge& e) const {return cost < e.cost;}};struct WeightedEdge {lint to;lint cost;WeightedEdge(lint v, lint c) {to = v;cost = c;}bool operator<(const WeightedEdge& e) const {return cost < e.cost;}};using WeightedGraph = V<V<WeightedEdge>>;typedef pair<lint, plint> tlint;typedef pair<lint, V<tlint>> state;typedef pair<ld, ld> pld;typedef pair<lint, tlint> qlint;typedef pair<lint, qlint> vlint;typedef pair<Edge, lint> pEd;typedef pair<plint, V<plint>> vVl;typedef pair<string, string> pstr;typedef pair<ld, lint> pint;typedef pair<lint, set<pint>> pset;template <std::int_fast64_t Modulus>class modint{using u64 = std::int_fast64_t;public:u64 a;constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {}constexpr u64& value() noexcept { return a; }constexpr const u64& value() const noexcept { return a; }constexpr modint operator+(const modint rhs) const noexcept{return modint(*this) += rhs;}constexpr modint operator-(const modint rhs) const noexcept{return modint(*this) -= rhs;}constexpr modint operator*(const modint rhs) const noexcept{return modint(*this) *= rhs;}constexpr modint operator/(const modint rhs) const noexcept{return modint(*this) /= rhs;}constexpr modint& operator+=(const modint rhs) noexcept{a += rhs.a;if (a >= Modulus){a -= Modulus;}return *this;}constexpr modint& operator-=(const modint rhs) noexcept{if (a < rhs.a){a += Modulus;}a -= rhs.a;return *this;}constexpr modint& operator*=(const modint rhs) noexcept{a = a * rhs.a % Modulus;return *this;}constexpr modint& operator/=(modint rhs) noexcept{u64 exp = Modulus - 2;while (exp){if (exp % 2){*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}};typedef modint<MOD998244353> ModInt;ModInt mod_pow(ModInt x, lint n) {ModInt ret = 1;while (n > 0) {if (n & 1) (ret *= x);(x *= x);n >>= 1;}return ret;}ModInt func[200000];ModInt revfunc[200000];void funcinit(int N){func[0] = 1;for (int i = 1; i <= N; i++){func[i] = func[i - 1] * i;}revfunc[N] = (ModInt)1 / func[N];for (int i = N; i >= 1; i--){revfunc[i - 1] = revfunc[i] * i;}}ModInt comb(ModInt n, ModInt r){if (n.a < 0 || n.a < r.a){return 0;}return func[n.a] / (func[r.a] * func[(n - r).a]);}void solve() {lint N, M, K;cin >> N >> M >> K;VVl ok(N, Vl(N));REP(i, M) {lint u, v;cin >> u >> v; u--; v--;ok[u][v] = 1;ok[v][u] = 1;}Vl _v(N + 1);_v[0] = 1;REP(i, N) _v[i + 1] = _v[i] * (K + 1);V<V<ModInt>> dp(_v[N], V<ModInt>(N));REP(i, N) {dp[_v[i]][i] = 1;}REP(bs, _v[N]) {Vl cnts(N);lint curr = bs;REP(i, N) {cnts[i] = curr % (K + 1);curr /= (K + 1);}REP(i, N) {REP(j, N) {if (cnts[j] == K) continue;if (!ok[i][j]) continue;dp[bs + _v[j]][j] += dp[bs][i];}}}ModInt ans = 0;REP(i, N) ans += dp[_v[N] - 1][i];cout << ans.a << endk;}int main() {lint T = 1;//cin >> T;while (T--) solve();}