結果
問題 | No.2733 Just K-times TSP |
ユーザー | deuteridayo |
提出日時 | 2024-04-19 22:23:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,221 bytes |
コンパイル時間 | 5,144 ms |
コンパイル使用メモリ | 288,560 KB |
実行使用メモリ | 250,112 KB |
最終ジャッジ日時 | 2024-10-11 15:52:56 |
合計ジャッジ時間 | 13,341 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
12,192 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 3 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 6 ms
6,820 KB |
testcase_15 | AC | 35 ms
7,808 KB |
testcase_16 | AC | 3 ms
6,816 KB |
testcase_17 | AC | 191 ms
24,704 KB |
testcase_18 | AC | 362 ms
38,144 KB |
testcase_19 | AC | 687 ms
58,368 KB |
testcase_20 | AC | 2 ms
6,820 KB |
testcase_21 | AC | 45 ms
10,368 KB |
testcase_22 | TLE | - |
testcase_23 | AC | 204 ms
24,704 KB |
testcase_24 | TLE | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; struct edge; using graph = vector<vector<edge>>; #define endl '\n' constexpr int INF = 1<<30; constexpr lint INF64 = 1LL<<61; constexpr lint mod107 = 1e9+7; using mint107 = modint1000000007; constexpr long mod = 998244353; using mint = modint998244353; lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}} lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}} lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;} lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;} lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;} lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;} double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));} string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}} lint Kai[20000001]; bool firstCallnCr = true; lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;} #define rep(i, n) for(int i = 0; i < n; i++) #define repp(i, x, y) for(int i = x; i < y; i++) #define vec vector #define pb push_back #define se second #define fi first #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() unsigned long Rand() { static unsigned long x=123456789, y=362436069, z=521288629, w=88675123; unsigned long t=(x^(x<<11)); x=y; y=z; z=w; return ( w=(w^(w>>19))^(t^(t>>8)) ); } struct Point { lint x, y; int quad; Point(lint X, lint Y) { x = X; y = Y; quad = getQuadrant(); } int getQuadrant() { if(x >= 0) { if(y >= 0) return 1; else return 4; } else { if(y >= 0) return 2; else return 3; } } }; bool operator<(const Point &left, const Point &right) { if(left.quad == right.quad) { return left.y * right.x < left.x * right.y; } else { return left.quad < right.quad; } } struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) { lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { return left.upper*right.lower < left.lower*right.upper; } lint extGCD(lint a, lint b, lint &x, lint &y) { if (b == 0) { x = 1; y = 0; return a; } lint d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } struct edge{ lint to; lint cost; }; vector<lint>dijkstra(int s, graph &g) { vec<lint>ret(g.size(), INF64); priority_queue<pair<lint, lint>>que; que.push({-0, s}); ret[s] = 0; while(!que.empty()) { auto q = que.top(); que.pop(); for(auto e: g[q.second]) { if(ret[e.to] > -q.first + e.cost) { ret[e.to] = -q.first + e.cost; que.push({-ret[e.to], e.to}); } } } return ret; } lint n,m,k; vec<vec<bool>>d(6, vec<bool>(6, false)); map<vec<int>, mint>dp; map<vec<int>, bool>went; mint f(vec<int>&S) { if(went[S]) return dp[S]; int v = S[n]; mint ans = 0; rep(nv, n) { if(d[v][nv] && S[nv] > 0) { S[nv]--; S[n] = nv; ans += f(S); S[nv]++; S[n] = v; } } went[S] = true; return dp[S] = ans; } int main(){ cin >> n >> m >> k; rep(i, m) { int u,v; cin >> u >> v; u--;v--; d[u][v] = true; d[v][u] = true; } vec<int>S(n, k); vec<int>G(n, 0); rep(i, n) { G.pb(i); went[G] = true; dp[G] = 1; G.pop_back(); } mint ans = 0; rep(i, n) { S.pb(i); S[i]--; ans += f(S); S[i]++; S.pop_back(); } cout << ans.val(); }