結果

問題 No.2731 Two Colors
ユーザー tkykwtnb
提出日時 2024-04-19 22:55:17
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,480 ms / 3,000 ms
コード長 5,467 bytes
コンパイル時間 364 ms
コンパイル使用メモリ 82,540 KB
実行使用メモリ 123,776 KB
最終ジャッジ日時 2024-10-11 16:54:02
合計ジャッジ時間 26,172 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a: Optional[List[T]] = None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
self.size = len(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int]:
"Find the bucket and position which x should be inserted. self must not be empty."
for a in self.a:
if x <= a[-1]: break
return (a, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def _pop(self, a: List[T], i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: self._build()
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return self._pop(a, i)
else:
for a in self.a:
if i < len(a): return self._pop(a, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
H,W=map(int,input().split())
A=[list(map(int,input().split())) for _ in range(H)]
B=[[9 for _ in range(W)] for _ in range(H)]
B[0][0]=1
B[H-1][W-1]=0
adj=[SortedSet([]),SortedSet([])]
DH=[-1,0,0,1]
DW=[0,-1,1,0]
for i in range(4):
dh=DH[i];dw=DW[i]
if not (0<=dh<H and 0<=dw<W):continue
adj[1].add((A[dh][dw],dh,dw))
for i in range(4):
dh=DH[i];dw=DW[i]
if not (0<=H-1+dh<H and 0<=W-1+dw<W):continue
adj[0].add((A[H-1+dh][W-1+dw],H-1+dh,W-1+dw))
ans=0
p=0
ok=1
while 1:
p=1-p
_,h,w=adj[p].pop(0)
B[h][w]=p
ans+=1
for i in range(4):
dh=DH[i];dw=DW[i]
if not (0<=h+dh<H and 0<=w+dw<W):continue
if B[h+dh][w+dw]==9:
adj[p].add((A[h+dh][w+dw],h+dh,w+dw))
elif B[h+dh][w+dw]==1-p:ok=0
if not ok:break
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0