結果
問題 | No.2733 Just K-times TSP |
ユーザー |
|
提出日時 | 2024-04-19 22:57:09 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,531 ms / 2,000 ms |
コード長 | 12,087 bytes |
コンパイル時間 | 5,128 ms |
コンパイル使用メモリ | 289,320 KB |
最終ジャッジ日時 | 2025-02-21 05:12:46 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用// 警告の抑制#define _CRT_SECURE_NO_WARNINGS// ライブラリの読み込み#include <bits/stdc++.h>using namespace std;// 型名の短縮using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;using Graph = vvi;// 定数の定義const double PI = acos(-1);int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)int DY[4] = {0, 1, 0, -1};int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;// 入出力高速化struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;// 汎用マクロの定義#define all(a) (a).begin(), (a).end()#define sz(x) ((int)(x).size())#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定// 汎用関数の定義template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら trueを返す)template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら trueを返す)template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod// 演算子オーバーロードtemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }#endif // 折りたたみ用#if __has_include(<atcoder/all>)#include <atcoder/all>using namespace atcoder;#ifdef _MSC_VER#include "localACL.hpp"#endif//using mint = modint1000000007;using mint = modint998244353;//using mint = modint; // mint::set_mod(m);namespace atcoder {inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }}using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;#endif#ifdef _MSC_VER // 手元環境(Visual Studio)#include "local.hpp"#else // 提出用(gcc)inline int popcount(int n) { return __builtin_popcount(n); }inline int popcount(ll n) { return __builtin_popcountll(n); }inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }#define dump(...)#define dumpel(v)#define dump_list(v)#define dump_mat(v)#define input_from_file(f)#define output_to_file(f)#endif//【グラフの入力】O(n + m)/** (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す.** n : グラフの頂点の数* m : グラフの辺の数(省略すれば n-1)* directed : 有向グラフか(省略すれば false)* zero_indexed : 入力が 0-indexed か(省略すれば false)*/Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_biGraph g(n);if (m == -1) m = n - 1;rep(j, m) {int a, b;cin >> a >> b;if (!zero_indexed) { --a; --b; }g[a].push_back(b);if (!directed && a != b) g[b].push_back(a);}return g;}//【グラフ → 隣接行列】O(n^2)/** 有向グラフ g の 0-1 隣接行列 adj[0..n)[0..n) を返す.*/vvi adjacency_matrix(const Graph& g) {int n = sz(g);vvi adj(n, vi(n));rep(s, n) repe(t, g[s]) adj[s][t] = 1;return adj;}void TLE() {int n, m, k;cin >> n >> m >> k;auto g = read_Graph(n, m);auto a = adjacency_matrix(g);// (from, to, seen) → cntmap<tuple<int, int, vi>, mint> dp;rep(v, n) {vi c(n);c[v] = 1;dp[{v, v, c}] = 1;}function<mint(int, int, vi)> rf = [&](int s, int t, vi c) {if (dp.count({ s, t, c })) return dp[{s, t, c}];if (c[t] == 0) return mint(0);mint res = 0;c[t]--;rep(v, n) {if (a[v][t] == 0) continue;res += rf(s, v, c);}c[t]++;return dp[{s, t, c}] = res;};vi c_all(n, k);mint res = 0;rep(s, n) rep(t, n) res += rf(s, t, c_all);// dumpel(dp);cout << res << endl;}void TLE2() {int n, m, k;cin >> n >> m >> k;auto g = read_Graph(n, m);auto a = adjacency_matrix(g);// (from, to, seen) → cntmap<array<int, 8>, mint> dp;rep(v, n) {array<int, 8> vvc;vvc[0] = vvc[1] = v;repi(i, 2, 2 + n - 1) vvc[i] = 0;vvc[2 + v] = 1;dp[vvc] = 1;}function<mint(array<int, 8>)> rf = [&](array<int, 8> stc) {if (dp.count(stc)) return dp[stc];int t = stc[1];if (stc[2 + t] == 0) return mint(0);mint res = 0;stc[2 + t]--;rep(v, n) {if (a[v][t] == 0) continue;auto svc(stc);svc[1] = v;res += rf(svc);}stc[2 + t]++;return dp[stc] = res;};vi c_all(n, k);mint res = 0;rep(s, n) rep(t, n) {array<int, 8> stc;stc[0] = s;stc[1] = t;repi(i, 2, 2 + n - 1) stc[i] = k;res += rf(stc);}// dumpel(dp);cout << res << endl;}//【ハッシュ(unordered 用)】/** unordered_set[map] の第二[三] 引数に Hash を渡して使う.*/struct Hash {// 参考 : https://qiita.com/ganyariya/items/df35d253726269bda436// verify : https://yukicoder.me/problems/no/1648// pair<int, ll> の場合の例size_t operator()(const array<int, 8>& p) const {size_t seed = 0;rep(i, 8) seed ^= hash<int>{}(p[i]) + 0x9e3779b9 + (seed << 6) + (seed >> 2);return seed;}};void TLE3() {int n, m, k;cin >> n >> m >> k;auto g = read_Graph(n, m);auto a = adjacency_matrix(g);// (from, to, seen) → cntunordered_map<array<int, 8>, mint, Hash> dp;rep(v, n) {array<int, 8> vvc;vvc[0] = vvc[1] = v;repi(i, 2, 2 + n - 1) vvc[i] = 0;vvc[2 + v] = 1;dp[vvc] = 1;}function<mint(array<int, 8>)> rf = [&](array<int, 8> stc) {if (dp.count(stc)) return dp[stc];int t = stc[1];if (stc[2 + t] == 0) return mint(0);mint res = 0;stc[2 + t]--;rep(v, n) {if (a[v][t] == 0) continue;auto svc(stc);svc[1] = v;res += rf(svc);}stc[2 + t]++;return dp[stc] = res;};vi c_all(n, k);mint res = 0;rep(s, n) rep(t, n) {array<int, 8> stc;stc[0] = s;stc[1] = t;repi(i, 2, 2 + n - 1) stc[i] = k;res += rf(stc);}// dumpel(dp);cout << res << endl;}//【数 → 混合基数表示】/** 最下位を 0 桁目とし,[0..n) 桁目が b[0..n) 未満の非負整数で与えられる混合基数について,* 値 val を混合基数表示したときの i 桁目の数字を d[i] に格納し d[0..n) を返す.*/template <class T>vector<T> mixed_radix_form(const vector<T>& b, ll val) {// verify : https://atcoder.jp/contests/abc231/tasks/abc231_eint n = sz(b);vector<T> d(n);rep(i, n) {d[i] = (T)(val % b[i]);val /= b[i];}return d;}//【混合基数表示 → 数】/** 最下位を 0 桁目とし,[0..n) 桁目が b[0..n) 未満の非負整数で与えられる混合基数について,* i 桁目の数字が d[i] である混合基数表示 d[0..n) で表される値を返す.*/template <class T>ll from_mixed_radix_form(const vector<T>& b, const vector<T>& d) {int n = sz(b);ll val = 0; ll w = 1;rep(i, n) {val += w * d[i];w *= b[i];}return val;}void TLE4() {int n, m, k;cin >> n >> m >> k;auto g = read_Graph(n, m);auto a = adjacency_matrix(g);vi B{ n, n };rep(i, n) B.push_back(k + 1);// (from, to, seen) → cntvm dp(19131876, -1); vb seen(19131876);rep(v, n) {vi vvc(2 + n);vvc[0] = vvc[1] = v;vvc[2 + v] = 1;int id = from_mixed_radix_form(B, vvc);dp[id] = 1;seen[id] = true;}function<mint(int)> rf = [&](int id) {if (seen[id]) return dp[id];auto stc = mixed_radix_form(B, id);int t = stc[1];if (stc[2 + t] == 0) return mint(0);mint res = 0;stc[2 + t]--;rep(v, n) {if (a[v][t] == 0) continue;auto svc(stc);svc[1] = v;int nid = from_mixed_radix_form(B, svc);res += rf(nid);}stc[2 + t]++;dp[id] = res;seen[id] = true;return res;};vi c_all(n, k);mint res = 0;rep(s, n) rep(t, n) {vi stc(2 + n);stc[0] = s;stc[1] = t;repi(i, 2, 2 + n - 1) stc[i] = k;int id = from_mixed_radix_form(B, stc);res += rf(id);}// dumpel(dp);cout << res << endl;}int main() {// input_from_file("input.txt");// output_to_file("output.txt");int n, m, k;cin >> n >> m >> k;auto g = read_Graph(n, m);auto a = adjacency_matrix(g);vi B{ n };rep(i, n) B.push_back(k + 1);// (to, seen) → cnt 始点いらんかったやん・・・・・・・・・・・・・・・・vm dp(3188646, -1); vb seen(3188646);rep(v, n) {vi vvc(1 + n);vvc[0] = v;vvc[1 + v] = 1;int id = from_mixed_radix_form(B, vvc);dp[id] = 1;seen[id] = true;}function<mint(int)> rf = [&](int id) {if (seen[id]) return dp[id];auto stc = mixed_radix_form(B, id);int t = stc[0];if (stc[1 + t] == 0) return mint(0);mint res = 0;stc[1 + t]--;rep(v, n) {if (a[v][t] == 0) continue;auto svc(stc);svc[0] = v;int nid = from_mixed_radix_form(B, svc);res += rf(nid);}stc[1 + t]++;dp[id] = res;seen[id] = true;return res;};vi c_all(n, k);mint res = 0;rep(t, n) {vi stc(1 + n);stc[0] = t;repi(i, 1, 1 + n - 1) stc[i] = k;int id = from_mixed_radix_form(B, stc);res += rf(id);}// dumpel(dp);cout << res << endl;}