結果
問題 | No.2734 Addition and Multiplication in yukicoder (Hard) |
ユーザー |
|
提出日時 | 2024-04-20 00:03:48 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 892 ms / 5,000 ms |
コード長 | 3,829 bytes |
コンパイル時間 | 3,290 ms |
コンパイル使用メモリ | 257,588 KB |
実行使用メモリ | 18,816 KB |
最終ジャッジ日時 | 2024-10-11 18:59:53 |
合計ジャッジ時間 | 16,875 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 36 |
ソースコード
# include <bits/stdc++.h>using namespace std;using ll = long long;using ull = unsigned long long;const double pi = acos(-1);template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }template<class T>constexpr T hinf() { return inf<T>() / 2; }template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }template<class T> bool is_sqare(T a) { if(floor(sqrt(a)) * floor(sqrt(a)) == a){ return true; }return false; }int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)# define len(x) ((ll)(x).size())# define bit(n) (1LL << (n))# define pb push_back# define exists(c, e) ((c).find(e) != (c).end())#ifdef LOCAL# include "_debug_print.hpp"# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)#else# define debug(...) (static_cast<void>(0))#endifstruct INIT{INIT(){std::ios::sync_with_stdio(false);std::cin.tie(0);cout << fixed << setprecision(20);}}INIT;template <std::uint_fast64_t Modulus> class modint {using u64 = std::uint_fast64_t;public:u64 a;constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}constexpr u64 &value() noexcept { return a; }constexpr const u64 &value() const noexcept { return a; }constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}friend std::ostream& operator<<(std::ostream& os, const modint& rhs) {os << rhs.a;return os;}};using mint = modint<998244353>;void solve(){int n;cin >> n;vector<string> a(n);for(auto &x : a)cin >> x;sort(all(a), [](string l, string r){return l+r < r+l;});mint ans = 0;rep(i, n){rep(j, len(a[i])){ans *= 10;ans += a[i][j]-'0';}}cout << ans << endl;}int main(){int t = 1;//cin >> t;while(t--)solve();}