結果
問題 | No.2739 Time is money |
ユーザー | hotman78 |
提出日時 | 2024-04-20 10:21:42 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 225 ms / 2,000 ms |
コード長 | 13,988 bytes |
コンパイル時間 | 3,455 ms |
コンパイル使用メモリ | 248,632 KB |
実行使用メモリ | 22,120 KB |
最終ジャッジ日時 | 2024-10-12 05:52:08 |
合計ジャッジ時間 | 9,459 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 18 |
ソースコード
// author: hotman78 // date: 2024/04/20-10:21:34 // --- begin raw code ----------------- // #include"cpplib/util/template.hpp" // #include"cpplib/graph_tree/dijkstra.hpp" // // void solve(){ // lint n,m,x; // cin>>n>>m>>x; // graph_w<lint>v(n); // rep(i,m){ // lint s,t,c,d; // cin>>s>>t>>c>>d; // s--;t--; // v[s].push_back({t,d*x+c}); // v[t].push_back({s,d*x+c}); // } // // 1円を1/x時間で稼ぐと考えると d+c/x で比較できる // lint ans=dijkstra<lint>(v,0)[n-1]; // if(ans>=INF/2){cout<<-1<<endl;} // else cout<<(ans+x-1)/x<<endl; // } // // int main(){ // solve(); // // lint t;cin>>t;while(t--)solve(); // } // --- end raw code ----------------- #line 2 "cpplib/util/template.hpp" #ifdef LOCAL #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") // #pragma GCC target("avx2") #include <bits/stdc++.h> using namespace std; #line 1 "cpplib/util/ioutil.hpp" // template <class Head,class... Args> // std::ostream& output(std::ostream& out,const Head& head,const Args&... args){ // out>>head; // return output(head,args...); // } // template <class Head> // std::ostream& output(std::ostream& out,const Head& head){ // out>>head; // return out; // } template <typename T, typename E> std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) { out << "(" << v.first << "," << v.second << ")"; return out; } // template <class... Args> // ostream& operator<<(ostream& out,std::tuple<Args...>v){ // std::apply(output,v); // return out; // } #line 11 "cpplib/util/template.hpp" struct __INIT__ { __INIT__() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } __INIT__; typedef long long lint; constexpr long long INF = 1LL << 60; constexpr int IINF = 1 << 30; constexpr double EPS = 1e-10; #ifndef REACTIVE #define endl '\n'; #endif typedef vector<lint> vec; typedef vector<vector<lint>> mat; typedef vector<vector<vector<lint>>> mat3; typedef vector<string> svec; typedef vector<vector<string>> smat; template <typename T> using V = vector<T>; template <typename T> using VV = V<V<T>>; #define output(t) \ { \ bool f = 0; \ for (auto val : (t)) { \ cout << (f ? " " : "") << val; \ f = 1; \ } \ cout << endl; \ } #define output2(t) \ { \ for (auto i : t) \ output(i); \ } #define debug(t) \ { \ bool f = 0; \ for (auto i : t) { \ cerr << (f ? " " : "") << i; \ f = 1; \ } \ cerr << endl; \ } #define debug2(t) \ { \ for (auto i : t) \ debug(i); \ } #define loop(n) for (long long _ = 0; _ < (long long)(n); ++_) #define _overload4(_1, _2, _3, _4, name, ...) name #define __rep(i, a) repi(i, 0, a, 1) #define _rep(i, a, b) repi(i, a, b, 1) #define repi(i, a, b, c) \ for (long long i = (long long)(a); i < (long long)(b); i += c) #define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__) #define _overload3_rev(_1, _2, _3, name, ...) name #define _rep_rev(i, a) repi_rev(i, 0, a) #define repi_rev(i, a, b) \ for (long long i = (long long)(b)-1; i >= (long long)(a); --i) #define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__) #define all(n) begin(n), end(n) template <typename T, typename E> bool chmin(T &s, const E &t) { bool res = s > t; s = min<T>(s, t); return res; } template <typename T, typename E> bool chmax(T &s, const E &t) { bool res = s < t; s = max<T>(s, t); return res; } const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1}; const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1}; #define SUM(v) accumulate(all(v), 0LL) #if __cplusplus >= 201703L template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return vector<T>(arg, x); else return vector(arg, make_vector<T>(x, args...)); } #endif #define bit(n, a) ((n >> a) & 1) #define extrep(v, ...) for (auto v : make_mat_impl({__VA_ARGS__})) vector<vector<long long>> make_mat_impl(vector<long long> v) { if (v.empty()) return vector<vector<long long>>(1, vector<long long>()); long long n = v.back(); v.pop_back(); vector<vector<long long>> ret; vector<vector<long long>> tmp = make_mat_impl(v); for (auto e : tmp) for (long long i = 0; i < n; ++i) { ret.push_back(e); ret.back().push_back(i); } return ret; } using graph = vector<vector<int>>; template <typename T> using graph_w = vector<vector<pair<int, T>>>; #if __cplusplus >= 201703L constexpr inline long long powll(long long a, long long b) { long long res = 1; while (b--) res *= a; return res; } #endif template <typename T, typename E> pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) { s.first += t.first; s.second += t.second; return s; } template <typename T, typename E> pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) { s.first -= t.first; s.second -= t.second; return s; } template <typename T, typename E> pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res += t; } template <typename T, typename E> pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res -= t; } #define BEGIN_STACK_EXTEND(size) \ void *stack_extend_memory_ = malloc(size); \ void *stack_extend_origin_memory_; \ char *stack_extend_dummy_memory_ = (char *)alloca( \ (1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \ *stack_extend_dummy_memory_ = 0; \ asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \ : "=b"(stack_extend_origin_memory_) \ : "a"((char *)stack_extend_memory_ + (size)-1024)); #define END_STACK_EXTEND \ asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \ free(stack_extend_memory_); int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; } #line 5 "cpplib/graph_tree/graph_template.hpp" /** * @brief グラフテンプレート */ using graph = std::vector<std::vector<int>>; template <typename T> using graph_w = std::vector<std::vector<std::pair<int, T>>>; graph load_graph(int n, int m) { graph g(n); for (int i = 0; i < m; ++i) { int s, t; std::cin >> s >> t; --s; --t; g[s].push_back(t); g[t].push_back(s); } return g; } graph load_digraph(int n, int m) { graph g(n); for (int i = 0; i < m; ++i) { int s, t; std::cin >> s >> t; --s; --t; g[s].push_back(t); } return g; } graph load_graph0(int n, int m) { graph g(n); for (int i = 0; i < m; ++i) { int s, t; std::cin >> s >> t; g[s].push_back(t); g[t].push_back(s); } return g; } graph load_digraph0(int n, int m) { graph g(n); for (int i = 0; i < m; ++i) { int s, t; std::cin >> s >> t; g[s].push_back(t); } return g; } graph load_tree(int n) { graph g(n); for (int i = 0; i < n - 1; ++i) { int s, t; std::cin >> s >> t; --s; --t; g[s].push_back(t); g[t].push_back(s); } return g; } graph load_tree0(int n) { graph g(n); for (int i = 0; i < n - 1; ++i) { int s, t; std::cin >> s >> t; g[s].push_back(t); g[t].push_back(s); } return g; } graph load_treep(int n) { graph g(n); for (int i = 0; i < n - 1; ++i) { int t; std::cin >> t; g[i + 1].push_back(t); g[t].push_back(i + 1); } return g; } template <typename T> graph_w<T> load_graph_weight(int n, int m) { graph_w<T> g(n); for (int i = 0; i < m; ++i) { int s, t; T u; std::cin >> s >> t >> u; --s; --t; g[s].emplace_back(t, u); g[t].emplace_back(s, u); } return g; } template <typename T> graph_w<T> load_digraph_weight(int n, int m) { graph_w<T> g(n); for (int i = 0; i < m; ++i) { int s, t; T u; std::cin >> s >> t >> u; --s; --t; g[s].emplace_back(t, u); } return g; } template <typename T> graph_w<T> load_graph0_weight(int n, int m) { graph_w<T> g(n); for (int i = 0; i < m; ++i) { int s, t; T u; std::cin >> s >> t >> u; g[s].emplace_back(t, u); g[t].emplace_back(s, u); } return g; } template <typename T> graph_w<T> load_digraph0_weight(int n, int m) { graph_w<T> g(n); for (int i = 0; i < m; ++i) { int s, t; T u; std::cin >> s >> t >> u; g[s].emplace_back(t, u); } return g; } template <typename T> graph_w<T> load_tree_weight(int n) { graph_w<T> g(n); for (int i = 0; i < n - 1; ++i) { int s, t; T u; std::cin >> s >> t >> u; --s; --t; g[s].emplace_back(t, u); g[t].emplace_back(s, u); } return g; } template <typename T> graph_w<T> load_tree0_weight(int n) { graph_w<T> g(n); for (int i = 0; i < n - 1; ++i) { int s, t; T u; std::cin >> s >> t >> u; g[s].emplace_back(t, u); g[t].emplace_back(s, u); } return g; } template <typename T> graph_w<T> load_treep_weight(int n) { graph_w<T> g(n); for (int i = 0; i < n - 1; ++i) { int t; T u; std::cin >> t >> u; g[i + 1].emplace_back(t, u); g[t].emplace_back(i + 1, u); } return g; } #line 10 "cpplib/graph_tree/dijkstra.hpp" /** * @brief ダイクストラ法 O((E+V)logE) */ template <typename T, typename F = std::less<T>, typename Add = std::plus<T>> struct dijkstra { int s; std::vector<T> diff; std::vector<int> par; std::vector<int> used; dijkstra(const graph_w<T> &list, int s, T zero = T(), T inf = std::numeric_limits<T>::max(), F f = F(), Add add = Add()) : s(s) { int n = list.size(); diff.resize(n, inf); par.resize(n, -1); used.resize(n, 0); std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que; diff[s] = zero; que.push(std::make_pair(T(), s)); while (!que.empty()) { auto d = que.top(); que.pop(); T x; int now; std::tie(x, now) = d; if (used[now]) continue; used[now] = 1; for (auto d2 : list[now]) { T sa; int to; std::tie(to, sa) = d2; T tmp = add(diff[now], sa); if (f(tmp, diff[to])) { diff[to] = tmp; par[to] = now; que.emplace(diff[to], to); } } } } vector<T> get() { return diff; } T operator[](int idx) { return diff[idx]; } bool reachable(int t) { return par[t] != -1; } std::vector<int> get_path(int t) { std::vector<int> res; while (t != s) { res.push_back(t); t = par[t]; } res.push_back(s); std::reverse(res.begin(), res.end()); return res; } }; #line 3 "main.cpp" void solve() { lint n, m, x; cin >> n >> m >> x; graph_w<lint> v(n); rep(i, m) { lint s, t, c, d; cin >> s >> t >> c >> d; s--; t--; v[s].push_back({t, d * x + c}); v[t].push_back({s, d * x + c}); } // 1円を1/x時間で稼ぐと考えると d+c/x で比較できる lint ans = dijkstra<lint>(v, 0)[n - 1]; if (ans >= INF / 2) { cout << -1 << endl; } else cout << (ans + x - 1) / x << endl; } int main() { solve(); // lint t;cin>>t;while(t--)solve(); }