結果
問題 | No.2739 Time is money |
ユーザー |
![]() |
提出日時 | 2024-04-20 10:21:42 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 211 ms / 2,000 ms |
コード長 | 13,988 bytes |
コンパイル時間 | 3,363 ms |
コンパイル使用メモリ | 246,852 KB |
最終ジャッジ日時 | 2025-02-21 06:07:34 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 18 |
ソースコード
// author: hotman78// date: 2024/04/20-10:21:34// --- begin raw code -----------------// #include"cpplib/util/template.hpp"// #include"cpplib/graph_tree/dijkstra.hpp"//// void solve(){// lint n,m,x;// cin>>n>>m>>x;// graph_w<lint>v(n);// rep(i,m){// lint s,t,c,d;// cin>>s>>t>>c>>d;// s--;t--;// v[s].push_back({t,d*x+c});// v[t].push_back({s,d*x+c});// }// // 1円を1/x時間で稼ぐと考えると d+c/x で比較できる// lint ans=dijkstra<lint>(v,0)[n-1];// if(ans>=INF/2){cout<<-1<<endl;}// else cout<<(ans+x-1)/x<<endl;// }//// int main(){// solve();// // lint t;cin>>t;while(t--)solve();// }// --- end raw code -----------------#line 2 "cpplib/util/template.hpp"#ifdef LOCAL#define _GLIBCXX_DEBUG#endif#pragma GCC optimize("Ofast")#pragma GCC optimize("unroll-loops")// #pragma GCC target("avx2")#include <bits/stdc++.h>using namespace std;#line 1 "cpplib/util/ioutil.hpp"// template <class Head,class... Args>// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){// out>>head;// return output(head,args...);// }// template <class Head>// std::ostream& output(std::ostream& out,const Head& head){// out>>head;// return out;// }template <typename T, typename E>std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) {out << "(" << v.first << "," << v.second << ")";return out;}// template <class... Args>// ostream& operator<<(ostream& out,std::tuple<Args...>v){// std::apply(output,v);// return out;// }#line 11 "cpplib/util/template.hpp"struct __INIT__ {__INIT__() {cin.tie(0);ios::sync_with_stdio(false);cout << fixed << setprecision(15);}} __INIT__;typedef long long lint;constexpr long long INF = 1LL << 60;constexpr int IINF = 1 << 30;constexpr double EPS = 1e-10;#ifndef REACTIVE#define endl '\n';#endiftypedef vector<lint> vec;typedef vector<vector<lint>> mat;typedef vector<vector<vector<lint>>> mat3;typedef vector<string> svec;typedef vector<vector<string>> smat;template <typename T> using V = vector<T>;template <typename T> using VV = V<V<T>>;#define output(t) \{ \bool f = 0; \for (auto val : (t)) { \cout << (f ? " " : "") << val; \f = 1; \} \cout << endl; \}#define output2(t) \{ \for (auto i : t) \output(i); \}#define debug(t) \{ \bool f = 0; \for (auto i : t) { \cerr << (f ? " " : "") << i; \f = 1; \} \cerr << endl; \}#define debug2(t) \{ \for (auto i : t) \debug(i); \}#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)#define _overload4(_1, _2, _3, _4, name, ...) name#define __rep(i, a) repi(i, 0, a, 1)#define _rep(i, a, b) repi(i, a, b, 1)#define repi(i, a, b, c) \for (long long i = (long long)(a); i < (long long)(b); i += c)#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)#define _overload3_rev(_1, _2, _3, name, ...) name#define _rep_rev(i, a) repi_rev(i, 0, a)#define repi_rev(i, a, b) \for (long long i = (long long)(b)-1; i >= (long long)(a); --i)#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)#define all(n) begin(n), end(n)template <typename T, typename E> bool chmin(T &s, const E &t) {bool res = s > t;s = min<T>(s, t);return res;}template <typename T, typename E> bool chmax(T &s, const E &t) {bool res = s < t;s = max<T>(s, t);return res;}const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};#define SUM(v) accumulate(all(v), 0LL)#if __cplusplus >= 201703Ltemplate <typename T, typename... Args>auto make_vector(T x, int arg, Args... args) {if constexpr (sizeof...(args) == 0)return vector<T>(arg, x);elsereturn vector(arg, make_vector<T>(x, args...));}#endif#define bit(n, a) ((n >> a) & 1)#define extrep(v, ...) for (auto v : make_mat_impl({__VA_ARGS__}))vector<vector<long long>> make_mat_impl(vector<long long> v) {if (v.empty())return vector<vector<long long>>(1, vector<long long>());long long n = v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp = make_mat_impl(v);for (auto e : tmp)for (long long i = 0; i < n; ++i) {ret.push_back(e);ret.back().push_back(i);}return ret;}using graph = vector<vector<int>>;template <typename T> using graph_w = vector<vector<pair<int, T>>>;#if __cplusplus >= 201703Lconstexpr inline long long powll(long long a, long long b) {long long res = 1;while (b--)res *= a;return res;}#endiftemplate <typename T, typename E>pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) {s.first += t.first;s.second += t.second;return s;}template <typename T, typename E>pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) {s.first -= t.first;s.second -= t.second;return s;}template <typename T, typename E>pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) {auto res = s;return res += t;}template <typename T, typename E>pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) {auto res = s;return res -= t;}#define BEGIN_STACK_EXTEND(size) \void *stack_extend_memory_ = malloc(size); \void *stack_extend_origin_memory_; \char *stack_extend_dummy_memory_ = (char *)alloca( \(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \*stack_extend_dummy_memory_ = 0; \asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \: "=b"(stack_extend_origin_memory_) \: "a"((char *)stack_extend_memory_ + (size)-1024));#define END_STACK_EXTEND \asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \free(stack_extend_memory_);int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; }#line 5 "cpplib/graph_tree/graph_template.hpp"/*** @brief グラフテンプレート*/using graph = std::vector<std::vector<int>>;template <typename T>using graph_w = std::vector<std::vector<std::pair<int, T>>>;graph load_graph(int n, int m) {graph g(n);for (int i = 0; i < m; ++i) {int s, t;std::cin >> s >> t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}graph load_digraph(int n, int m) {graph g(n);for (int i = 0; i < m; ++i) {int s, t;std::cin >> s >> t;--s;--t;g[s].push_back(t);}return g;}graph load_graph0(int n, int m) {graph g(n);for (int i = 0; i < m; ++i) {int s, t;std::cin >> s >> t;g[s].push_back(t);g[t].push_back(s);}return g;}graph load_digraph0(int n, int m) {graph g(n);for (int i = 0; i < m; ++i) {int s, t;std::cin >> s >> t;g[s].push_back(t);}return g;}graph load_tree(int n) {graph g(n);for (int i = 0; i < n - 1; ++i) {int s, t;std::cin >> s >> t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}graph load_tree0(int n) {graph g(n);for (int i = 0; i < n - 1; ++i) {int s, t;std::cin >> s >> t;g[s].push_back(t);g[t].push_back(s);}return g;}graph load_treep(int n) {graph g(n);for (int i = 0; i < n - 1; ++i) {int t;std::cin >> t;g[i + 1].push_back(t);g[t].push_back(i + 1);}return g;}template <typename T> graph_w<T> load_graph_weight(int n, int m) {graph_w<T> g(n);for (int i = 0; i < m; ++i) {int s, t;T u;std::cin >> s >> t >> u;--s;--t;g[s].emplace_back(t, u);g[t].emplace_back(s, u);}return g;}template <typename T> graph_w<T> load_digraph_weight(int n, int m) {graph_w<T> g(n);for (int i = 0; i < m; ++i) {int s, t;T u;std::cin >> s >> t >> u;--s;--t;g[s].emplace_back(t, u);}return g;}template <typename T> graph_w<T> load_graph0_weight(int n, int m) {graph_w<T> g(n);for (int i = 0; i < m; ++i) {int s, t;T u;std::cin >> s >> t >> u;g[s].emplace_back(t, u);g[t].emplace_back(s, u);}return g;}template <typename T> graph_w<T> load_digraph0_weight(int n, int m) {graph_w<T> g(n);for (int i = 0; i < m; ++i) {int s, t;T u;std::cin >> s >> t >> u;g[s].emplace_back(t, u);}return g;}template <typename T> graph_w<T> load_tree_weight(int n) {graph_w<T> g(n);for (int i = 0; i < n - 1; ++i) {int s, t;T u;std::cin >> s >> t >> u;--s;--t;g[s].emplace_back(t, u);g[t].emplace_back(s, u);}return g;}template <typename T> graph_w<T> load_tree0_weight(int n) {graph_w<T> g(n);for (int i = 0; i < n - 1; ++i) {int s, t;T u;std::cin >> s >> t >> u;g[s].emplace_back(t, u);g[t].emplace_back(s, u);}return g;}template <typename T> graph_w<T> load_treep_weight(int n) {graph_w<T> g(n);for (int i = 0; i < n - 1; ++i) {int t;T u;std::cin >> t >> u;g[i + 1].emplace_back(t, u);g[t].emplace_back(i + 1, u);}return g;}#line 10 "cpplib/graph_tree/dijkstra.hpp"/*** @brief ダイクストラ法 O((E+V)logE)*/template <typename T, typename F = std::less<T>, typename Add = std::plus<T>>struct dijkstra {int s;std::vector<T> diff;std::vector<int> par;std::vector<int> used;dijkstra(const graph_w<T> &list, int s, T zero = T(),T inf = std::numeric_limits<T>::max(), F f = F(), Add add = Add()): s(s) {int n = list.size();diff.resize(n, inf);par.resize(n, -1);used.resize(n, 0);std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,std::greater<std::pair<T, int>>>que;diff[s] = zero;que.push(std::make_pair(T(), s));while (!que.empty()) {auto d = que.top();que.pop();T x;int now;std::tie(x, now) = d;if (used[now])continue;used[now] = 1;for (auto d2 : list[now]) {T sa;int to;std::tie(to, sa) = d2;T tmp = add(diff[now], sa);if (f(tmp, diff[to])) {diff[to] = tmp;par[to] = now;que.emplace(diff[to], to);}}}}vector<T> get() { return diff; }T operator[](int idx) { return diff[idx]; }bool reachable(int t) { return par[t] != -1; }std::vector<int> get_path(int t) {std::vector<int> res;while (t != s) {res.push_back(t);t = par[t];}res.push_back(s);std::reverse(res.begin(), res.end());return res;}};#line 3 "main.cpp"void solve() {lint n, m, x;cin >> n >> m >> x;graph_w<lint> v(n);rep(i, m) {lint s, t, c, d;cin >> s >> t >> c >> d;s--;t--;v[s].push_back({t, d * x + c});v[t].push_back({s, d * x + c});}// 1円を1/x時間で稼ぐと考えると d+c/x で比較できるlint ans = dijkstra<lint>(v, 0)[n - 1];if (ans >= INF / 2) {cout << -1 << endl;} elsecout << (ans + x - 1) / x << endl;}int main() {solve();// lint t;cin>>t;while(t--)solve();}