結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー | hotman78 |
提出日時 | 2024-04-20 12:32:47 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 27,910 bytes |
コンパイル時間 | 3,252 ms |
コンパイル使用メモリ | 234,268 KB |
実行使用メモリ | 34,832 KB |
最終ジャッジ日時 | 2024-10-12 07:54:46 |
合計ジャッジ時間 | 15,691 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 588 ms
34,700 KB |
testcase_31 | AC | 590 ms
34,784 KB |
testcase_32 | AC | 583 ms
34,832 KB |
testcase_33 | AC | 586 ms
34,696 KB |
testcase_34 | AC | 575 ms
34,752 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | AC | 2 ms
5,248 KB |
testcase_40 | AC | 2 ms
5,248 KB |
testcase_41 | AC | 2 ms
5,248 KB |
ソースコード
// author: hotman78 // date: 2024/04/20-12:32:36 // --- begin raw code ----------------- // #include"cpplib/util/template.hpp" // // #include"cpplib/graph_tree/dijkstra.hpp" // #include"cpplib/math/ACL_modint998244353.hpp" // #include"cpplib/math/lagrange_interpolation.hpp" // // void solve(){ // lint n,k; // cin>>n>>k; // vector<mint>v1(k+3,0),v2(k+3,0); // rep(i,1,k+3){ // v1[i]=v1[i-1]+mint(i).pow(k); // v2[i]=v2[i-1]+mint(i).pow(k+1); // } // mint ans=lagrange_interpolation<mint>(v1,n)*n-lagrange_interpolation<mint>(v2,n); // vector<mint>tb={1, 945896249,826994544,147972654,718271290,311054462,848172652,487479281,181218541,225032295,464016596,303879624,711595889,801978400,274311861,262505243,197661226,560969645,59654808,844084429,63299249,656698209,745706197,782663844,722450722,437503635,974490943,756414660,100919583,567153381,434731971,992060846,397327632,588176542,152285902,561146832,410851918,739984378,631617451,918814530,55395755,984167498,880949811,904643816,713793642,44666331,712775427,443688906,488198727,374504494,15814281,809754637,581403016,931134979,415434801,733417940,522329741,396654552,691138193,924037483,565294571,647279052,93888746,491863506,860288574,933267285,420593226,601485588,643768503,139726730,293833759,963402916,983736712,496456348,270369543,205793557,946545391,54554286,827540230,533325452,851627080,695240733,872441336,641905269,107293455,814887934,659546511,435069442,36312125,691840784,130777589,586041601,696055209,627965301,914253051,159075500,818001905,839514995,613224734,923597279,0}; // ans*=tb[n/10000000]; // rep(i,1,n%10000000){ // ans*=n/10000000*10000000+i; // } // ans*=2; // cout<<ans<<endl; // } // // int main(){ // // mint t=1; // // rep(i,1,1000000001){ // // if(i%10000000==0)cout<<t<<","; // // t*=i; // // } // // solve(); // // lint t;cin>>t;while(t--)solve(); // } // --- end raw code ----------------- #line 2 "cpplib/util/template.hpp" #ifdef LOCAL #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") // #pragma GCC target("avx2") #include <bits/stdc++.h> using namespace std; #line 1 "cpplib/util/ioutil.hpp" // template <class Head,class... Args> // std::ostream& output(std::ostream& out,const Head& head,const Args&... args){ // out>>head; // return output(head,args...); // } // template <class Head> // std::ostream& output(std::ostream& out,const Head& head){ // out>>head; // return out; // } template <typename T, typename E> std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) { out << "(" << v.first << "," << v.second << ")"; return out; } // template <class... Args> // ostream& operator<<(ostream& out,std::tuple<Args...>v){ // std::apply(output,v); // return out; // } #line 11 "cpplib/util/template.hpp" struct __INIT__ { __INIT__() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } __INIT__; typedef long long lint; constexpr long long INF = 1LL << 60; constexpr int IINF = 1 << 30; constexpr double EPS = 1e-10; #ifndef REACTIVE #define endl '\n'; #endif typedef vector<lint> vec; typedef vector<vector<lint>> mat; typedef vector<vector<vector<lint>>> mat3; typedef vector<string> svec; typedef vector<vector<string>> smat; template <typename T> using V = vector<T>; template <typename T> using VV = V<V<T>>; #define output(t) \ { \ bool f = 0; \ for (auto val : (t)) { \ cout << (f ? " " : "") << val; \ f = 1; \ } \ cout << endl; \ } #define output2(t) \ { \ for (auto i : t) \ output(i); \ } #define debug(t) \ { \ bool f = 0; \ for (auto i : t) { \ cerr << (f ? " " : "") << i; \ f = 1; \ } \ cerr << endl; \ } #define debug2(t) \ { \ for (auto i : t) \ debug(i); \ } #define loop(n) for (long long _ = 0; _ < (long long)(n); ++_) #define _overload4(_1, _2, _3, _4, name, ...) name #define __rep(i, a) repi(i, 0, a, 1) #define _rep(i, a, b) repi(i, a, b, 1) #define repi(i, a, b, c) \ for (long long i = (long long)(a); i < (long long)(b); i += c) #define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__) #define _overload3_rev(_1, _2, _3, name, ...) name #define _rep_rev(i, a) repi_rev(i, 0, a) #define repi_rev(i, a, b) \ for (long long i = (long long)(b)-1; i >= (long long)(a); --i) #define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__) #define all(n) begin(n), end(n) template <typename T, typename E> bool chmin(T &s, const E &t) { bool res = s > t; s = min<T>(s, t); return res; } template <typename T, typename E> bool chmax(T &s, const E &t) { bool res = s < t; s = max<T>(s, t); return res; } const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1}; const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1}; #define SUM(v) accumulate(all(v), 0LL) #if __cplusplus >= 201703L template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return vector<T>(arg, x); else return vector(arg, make_vector<T>(x, args...)); } #endif #define bit(n, a) ((n >> a) & 1) #define extrep(v, ...) for (auto v : make_mat_impl({__VA_ARGS__})) vector<vector<long long>> make_mat_impl(vector<long long> v) { if (v.empty()) return vector<vector<long long>>(1, vector<long long>()); long long n = v.back(); v.pop_back(); vector<vector<long long>> ret; vector<vector<long long>> tmp = make_mat_impl(v); for (auto e : tmp) for (long long i = 0; i < n; ++i) { ret.push_back(e); ret.back().push_back(i); } return ret; } using graph = vector<vector<int>>; template <typename T> using graph_w = vector<vector<pair<int, T>>>; #if __cplusplus >= 201703L constexpr inline long long powll(long long a, long long b) { long long res = 1; while (b--) res *= a; return res; } #endif template <typename T, typename E> pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) { s.first += t.first; s.second += t.second; return s; } template <typename T, typename E> pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) { s.first -= t.first; s.second -= t.second; return s; } template <typename T, typename E> pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res += t; } template <typename T, typename E> pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res -= t; } #define BEGIN_STACK_EXTEND(size) \ void *stack_extend_memory_ = malloc(size); \ void *stack_extend_origin_memory_; \ char *stack_extend_dummy_memory_ = (char *)alloca( \ (1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \ *stack_extend_dummy_memory_ = 0; \ asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \ : "=b"(stack_extend_origin_memory_) \ : "a"((char *)stack_extend_memory_ + (size)-1024)); #define END_STACK_EXTEND \ asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \ free(stack_extend_memory_); int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; } #line 2 "main.cpp" // #include"cpplib/graph_tree/dijkstra.hpp" #line 2 "cpplib/math/ACL_modint998244353.hpp" #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint &operator*=(const mint &rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using mint = atcoder::modint998244353; #line 4 "cpplib/math/ACL_modint_base.hpp" std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept { lhs << rhs.val(); return lhs; } std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept { long long x; lhs >> x; rhs = x; return lhs; } int MOD_NOW = -1; int FACT_TABLE_SIZE = 0; std::vector<mint> fact_table, fact_inv_table; void update(int x) { if (MOD_NOW != mint::mod() || FACT_TABLE_SIZE == 0) { fact_table.assign(1, 1); fact_inv_table.assign(1, 1); FACT_TABLE_SIZE = 1; MOD_NOW = mint::mod(); } while (FACT_TABLE_SIZE <= x) { fact_table.resize(FACT_TABLE_SIZE * 2); fact_inv_table.resize(FACT_TABLE_SIZE * 2); for (int i = FACT_TABLE_SIZE; i < FACT_TABLE_SIZE * 2; ++i) { fact_table[i] = fact_table[i - 1] * i; } fact_inv_table[FACT_TABLE_SIZE * 2 - 1] = fact_table[FACT_TABLE_SIZE * 2 - 1].inv(); for (int i = FACT_TABLE_SIZE * 2 - 2; i >= FACT_TABLE_SIZE; --i) { fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1); } FACT_TABLE_SIZE *= 2; } } inline mint fact(int x) { assert(x >= 0); update(x); return fact_table[x]; } inline mint fact_inv(int x) { assert(x >= 0); update(x); return fact_inv_table[x]; } inline mint comb(int x, int y) { if (x < 0 || x < y || y < 0) return 0; return fact(x) * fact_inv(y) * fact_inv(x - y); } inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); } // x個のグループにy個のものを分ける場合の数 inline mint multi_comb(int x, int y) { if (y == 0 && x >= 0) return 1; if (y < 0 || x <= 0) return 0; return comb(x + y - 1, y); } #line 3 "cpplib/math/lagrange_interpolation.hpp" /** * @brief ラグランジュ補完(連続点->一点) */ template <typename T> T lagrange_interpolation(std::vector<T> v, long long n) { long long k = v.size(); if (n < k) return v[n]; std::vector<T> tmp1(k + 1, 1), tmp2(k + 1, 1); T ans = 0; for (int i = 0; i < k; ++i) tmp1[i] = (i ? tmp1[i - 1] : T(1)) * (n - i); for (int i = k - 1; i >= 0; --i) tmp2[i] = (i < k - 1 ? tmp2[i + 1] : T(1)) * (n - i); for (int i = 0; i < k; ++i) { ans += v[i] * (i < k - 1 ? tmp2[i + 1] : 1) * (i ? tmp1[i - 1] : T(1)) / (fact(k - 1 - i) * fact(i) * T((k - 1 - i) % 2 ? -1 : 1)); } return ans; } #line 5 "main.cpp" void solve() { lint n, k; cin >> n >> k; vector<mint> v1(k + 3, 0), v2(k + 3, 0); rep(i, 1, k + 3) { v1[i] = v1[i - 1] + mint(i).pow(k); v2[i] = v2[i - 1] + mint(i).pow(k + 1); } mint ans = lagrange_interpolation<mint>(v1, n) * n - lagrange_interpolation<mint>(v2, n); vector<mint> tb = { 1, 945896249, 826994544, 147972654, 718271290, 311054462, 848172652, 487479281, 181218541, 225032295, 464016596, 303879624, 711595889, 801978400, 274311861, 262505243, 197661226, 560969645, 59654808, 844084429, 63299249, 656698209, 745706197, 782663844, 722450722, 437503635, 974490943, 756414660, 100919583, 567153381, 434731971, 992060846, 397327632, 588176542, 152285902, 561146832, 410851918, 739984378, 631617451, 918814530, 55395755, 984167498, 880949811, 904643816, 713793642, 44666331, 712775427, 443688906, 488198727, 374504494, 15814281, 809754637, 581403016, 931134979, 415434801, 733417940, 522329741, 396654552, 691138193, 924037483, 565294571, 647279052, 93888746, 491863506, 860288574, 933267285, 420593226, 601485588, 643768503, 139726730, 293833759, 963402916, 983736712, 496456348, 270369543, 205793557, 946545391, 54554286, 827540230, 533325452, 851627080, 695240733, 872441336, 641905269, 107293455, 814887934, 659546511, 435069442, 36312125, 691840784, 130777589, 586041601, 696055209, 627965301, 914253051, 159075500, 818001905, 839514995, 613224734, 923597279, 0}; ans *= tb[n / 10000000]; rep(i, 1, n % 10000000) { ans *= n / 10000000 * 10000000 + i; } ans *= 2; cout << ans << endl; } int main() { // mint t=1; // rep(i,1,1000000001){ // if(i%10000000==0)cout<<t<<","; // t*=i; // } solve(); // lint t;cin>>t;while(t--)solve(); }