結果

問題 No.2739 Time is money
ユーザー siganaisiganai
提出日時 2024-04-20 13:25:33
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 240 ms / 2,000 ms
コード長 7,509 bytes
コンパイル時間 2,315 ms
コンパイル使用メモリ 216,284 KB
実行使用メモリ 20,480 KB
最終ジャッジ日時 2024-10-12 08:53:57
合計ジャッジ時間 6,832 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 86 ms
13,440 KB
testcase_03 AC 177 ms
17,568 KB
testcase_04 AC 83 ms
12,964 KB
testcase_05 AC 126 ms
13,056 KB
testcase_06 AC 157 ms
15,832 KB
testcase_07 AC 235 ms
19,840 KB
testcase_08 AC 240 ms
20,096 KB
testcase_09 AC 231 ms
20,352 KB
testcase_10 AC 176 ms
19,712 KB
testcase_11 AC 232 ms
20,224 KB
testcase_12 AC 161 ms
18,816 KB
testcase_13 AC 157 ms
18,816 KB
testcase_14 AC 152 ms
18,816 KB
testcase_15 AC 109 ms
17,804 KB
testcase_16 AC 111 ms
16,952 KB
testcase_17 AC 226 ms
20,440 KB
testcase_18 AC 230 ms
20,480 KB
testcase_19 AC 143 ms
17,548 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test.cpp"
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} 
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }

#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/graph/graph-template.hpp"
template <typename T> 
struct Edge {
	int from, to;
	T cost;
	Edge() = default;
	Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
	Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
	bool operator < (const Edge &a) const { return cost < a.cost; }
	bool operator > (const Edge &a) const { return cost > a.cost; }
    Edge &operator = (const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
 
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
    Ugraph g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        cin >> a >> b;
        a -= origin, b -= origin;
        g[a].push_back(b);
        if(!is_directed) g[b].push_back(a);
    }
    return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
    Wgraph<T> g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        T c;
        cin >> a >> b >> c;
        a -= origin, b -= origin;
        g[a].emplace_back(b,c);
        if(!is_directed) g[b].emplace_back(a,c);
    }
    return g;
}
#line 3 "library/shortest-path/dijkstra.hpp"
template <typename T>
vector<T> dijkstra(Wgraph<T> &g,int start = 0) {
    int N = (int)g.size();
    using P = pair<T,int>;
    vector<T> d(N,T(-1));
    priority_queue<P,vector<P>,greater<P>> pq;
    d[start] = 0;
    pq.emplace(0,start);
    while(!pq.empty()) {
        P p = pq.top();
        pq.pop();
        int now = p.second;
        if (d[now] < p.first) continue;
        for (auto nex: g[now]) {
            if (d[nex] == T(-1) || d[nex] > d[now] + nex.cost) {
                d[nex] = d[now] + nex.cost;
                pq.emplace(d[nex],nex); 
            }
        }
    }
    return d;
}
template <typename T>
vector<int> restore_shortest_path(Wgraph<T> &g,vector<T> &dist,int start,int goal) {
    vector<int> res;
    if (start == goal) {
        res.push_back(start);
        return res;
    }
    int N = g.size();
    Wgraph<T> rg(N);
    for (int i = 0;i < N;i++) {
        for (auto &edge:g[i]) rg[edge.to].emplace_back(edge.to,i,edge.cost);
    }

    res.push_back(goal);
    int p = goal;
    T dd = dist[goal];
    vector<int> vis(N);
    vis[goal] = 1;
    const T INF = numeric_limits<T>::max() / 2;
    while(p != start) {
        int nex = -1;
        T nval = INF;
        for(auto &edge:rg[p]) {
            if (vis[edge] || dist[edge] + edge.cost != dd) continue;
            if (dist[edge] != -1 && dist[edge] < nval) {
                nval = dist[edge];
                nex = edge;
                break;
            }
        }
        res.push_back((vis[nex] = 1,dd = nval, p = nex));
    }
    reverse(begin(res),end(res));
    return res;
};
#line 90 "test.cpp"
int main() {
    INT(n,m,x);
    Wgraph<ll> g(n);
    rep(i,m) {
        INT(u,v,c,t);
        u--,v--;
        g[u].emplace_back(v,1LL * x * t + c);
        g[v].emplace_back(u,1LL * x * t + c);
    }
    auto dist = dijkstra(g);
    debug(dist[n-1]);
    if(dist[n-1] == -1) cout << -1 << '\n';
    else cout << (dist[n-1] + x - 1) / x << '\n';
}
0