結果

問題 No.2747 Permutation Adjacent Sum
ユーザー ebi_flyebi_fly
提出日時 2024-04-20 16:22:34
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 114 ms / 3,000 ms
コード長 29,520 bytes
コンパイル時間 3,451 ms
コンパイル使用メモリ 259,200 KB
実行使用メモリ 27,132 KB
最終ジャッジ日時 2024-10-12 12:10:08
合計ジャッジ時間 6,854 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 50 ms
12,180 KB
testcase_01 AC 10 ms
6,824 KB
testcase_02 AC 33 ms
9,088 KB
testcase_03 AC 11 ms
6,820 KB
testcase_04 AC 51 ms
12,928 KB
testcase_05 AC 114 ms
26,812 KB
testcase_06 AC 56 ms
13,952 KB
testcase_07 AC 48 ms
11,904 KB
testcase_08 AC 73 ms
17,788 KB
testcase_09 AC 100 ms
23,672 KB
testcase_10 AC 15 ms
6,816 KB
testcase_11 AC 47 ms
11,904 KB
testcase_12 AC 6 ms
6,816 KB
testcase_13 AC 24 ms
7,168 KB
testcase_14 AC 67 ms
16,264 KB
testcase_15 AC 98 ms
23,148 KB
testcase_16 AC 50 ms
12,416 KB
testcase_17 AC 89 ms
21,760 KB
testcase_18 AC 90 ms
20,864 KB
testcase_19 AC 12 ms
6,816 KB
testcase_20 AC 53 ms
13,056 KB
testcase_21 AC 73 ms
17,972 KB
testcase_22 AC 84 ms
19,092 KB
testcase_23 AC 43 ms
10,624 KB
testcase_24 AC 45 ms
11,136 KB
testcase_25 AC 30 ms
8,320 KB
testcase_26 AC 68 ms
16,640 KB
testcase_27 AC 76 ms
18,380 KB
testcase_28 AC 74 ms
17,544 KB
testcase_29 AC 53 ms
13,056 KB
testcase_30 AC 111 ms
27,064 KB
testcase_31 AC 111 ms
26,984 KB
testcase_32 AC 111 ms
27,132 KB
testcase_33 AC 109 ms
26,956 KB
testcase_34 AC 111 ms
26,968 KB
testcase_35 AC 2 ms
6,820 KB
testcase_36 AC 2 ms
6,820 KB
testcase_37 AC 2 ms
6,816 KB
testcase_38 AC 2 ms
6,816 KB
testcase_39 AC 2 ms
6,820 KB
testcase_40 AC 2 ms
6,820 KB
testcase_41 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test/yuki/yuki_2747.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/2747"

#line 1 "template/template.hpp"
#include <bits/stdc++.h>

#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()

#line 2 "template/debug_template.hpp"

#line 4 "template/debug_template.hpp"

namespace ebi {

#ifdef LOCAL
#define debug(...)                                                      \
    std::cerr << "LINE: " << __LINE__ << "  [" << #__VA_ARGS__ << "]:", \
        debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif

void debug_out() {
    std::cerr << std::endl;
}

template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
    std::cerr << " " << h;
    if (sizeof...(t) > 0) std::cerr << " :";
    debug_out(t...);
}

}  // namespace ebi
#line 2 "template/int_alias.hpp"

#line 4 "template/int_alias.hpp"

namespace ebi {

using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;

}  // namespace ebi
#line 2 "template/io.hpp"

#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"

namespace ebi {

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
    return os << pa.first << " " << pa.second;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
    return os >> pa.first >> pa.second;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
    for (std::size_t i = 0; i < vec.size(); i++)
        os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    return os;
}

template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
    for (T &e : vec) std::cin >> e;
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
    if (opt) {
        os << opt.value();
    } else {
        os << "invalid value";
    }
    return os;
}

void fast_io() {
    std::cout << std::fixed << std::setprecision(15);
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
}

}  // namespace ebi
#line 2 "template/utility.hpp"

#line 5 "template/utility.hpp"

#line 2 "graph/base.hpp"

#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        return edges;
    }

    const auto operator[](int i) const {
        return csr[i];
    }
    auto operator[](int i) {
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int,edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 8 "template/utility.hpp"

namespace ebi {

template <class T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> T safe_ceil(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return (a / b) + 1;
    else
        return -((-a) / b);
}

template <class T> T safe_floor(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return a / b;
    else
        return -((-a) / b) - 1;
}

constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;

constexpr int INF = std::numeric_limits<int>::max() / 2;

const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};

}  // namespace ebi
#line 2 "math/lagrange_interpolation.hpp"

#line 4 "math/lagrange_interpolation.hpp"

/*
    reference: https://atcoder.jp/contests/abc208/editorial/2195
    verify: https://atcoder.jp/contests/abc208/tasks/abc208_f
*/

namespace ebi {

template <class mint>
mint lagrange_interpolation(const std::vector<mint> &f, long long n) {
    const int d = int(f.size()) - 1;  // Nのd次以下の多項式
    mint fact = 1;
    std::vector<mint> inv_fact(d + 1);
    for (int i = 1; i < d + 1; ++i) {
        fact *= i;
    }
    inv_fact[d] = fact.inv();
    for (int i = d; i > 0; i--) {
        inv_fact[i - 1] = inv_fact[i] * i;
    }
    std::vector<mint> l(d + 1), r(d + 1);
    l[0] = 1;
    for (int i = 0; i < d; ++i) {
        l[i + 1] = l[i] * (n - i);
    }
    r[d] = 1;
    for (int i = d; i > 0; --i) {
        r[i - 1] = r[i] * (n - i);
    }
    mint res = 0;
    for (int i = 0; i < d + 1; ++i) {
        res += mint((d - i) % 2 == 1 ? -1 : 1) * f[i] * l[i] * r[i] *
               inv_fact[i] * inv_fact[d - i];
    }
    return res;
}

}  // namespace ebi
#line 2 "math/linear_sieve.hpp"

#line 4 "math/linear_sieve.hpp"

/*
    reference: https://37zigen.com/linear-sieve/
    verify:    https://atcoder.jp/contests/abc162/submissions/25095562
*/

#line 12 "math/linear_sieve.hpp"

namespace ebi {

struct linear_sieve {
  private:
    using u64 = std::uint64_t;
    int n;
    std::vector<int> sieve;
    std::vector<int> prime;

  public:
    linear_sieve(int _n) : n(_n), sieve(std::vector<int>(_n + 1, -1)) {
        for (int i = 2; i <= n; i++) {
            if (sieve[i] < 0) {
                sieve[i] = i;
                prime.emplace_back(i);
            }
            for (auto p : prime) {
                if (u64(p) * u64(i) > u64(n) || p > sieve[i]) break;
                sieve[p * i] = p;
            }
        }
    }

    std::vector<int> prime_table() const {
        return prime;
    }

    std::vector<std::pair<int, int>> prime_power_table(int m) const {
        assert(m <= n);
        std::vector<std::pair<int, int>> table(m + 1, {1, 1});
        for (int i = 2; i <= m; i++) {
            int p = sieve[i];
            table[i] = {p, p};
            if (sieve[i / p] == p) {
                table[i] = table[i / p];
                table[i].second *= p;
            }
        }
        return table;
    }

    std::vector<std::pair<int, int>> factorize(int x) {
        assert(x <= n);
        std::vector<std::pair<int, int>> res;
        while (x > 1) {
            int p = sieve[x];
            int exp = 0;
            if (p < 0) {
                res.emplace_back(x, 1);
                break;
            }
            while (sieve[x] == p) {
                x /= p;
                exp++;
            }
            res.emplace_back(p, exp);
        }
        return res;
    }

    std::vector<int> divisors(int x) {
        assert(x <= n);
        std::vector<int> res;
        res.emplace_back(1);
        auto pf = factorize(x);
        for (auto p : pf) {
            int sz = (int)res.size();
            for (int i = 0; i < sz; i++) {
                int ret = 1;
                for (int j = 0; j < p.second; j++) {
                    ret *= p.first;
                    res.emplace_back(res[i] * ret);
                }
            }
        }
        return res;
    }

    template <class T> std::vector<T> fast_zeta(const std::vector<T> &f) {
        std::vector<T> F = f;
        int sz = f.size();
        assert(sz <= n + 1);
        for (int i = 2; i < sz; i++) {
            if (sieve[i] != i) continue;
            for (int j = (sz - 1) / i; j >= 1; j--) {
                F[j] += F[j * i];
            }
        }
        return F;
    }

    template <class T> std::vector<T> fast_mobius(const std::vector<T> &F) {
        std::vector<T> f = F;
        int sz = F.size();
        assert(sz <= n + 1);
        for (int i = 2; i < sz; i++) {
            if (sieve[i] != i) continue;
            for (int j = 1; j * i < sz; j++) {
                f[j] -= f[j * i];
            }
        }
        return f;
    }

    template <class modint> std::vector<modint> pow_table(int k) {
        std::vector<modint> table(n + 1, 1);
        table[0] = 0;
        for (int i = 2; i <= n; i++) {
            if (sieve[i] == i) {
                table[i] = modint(i).pow(k);
                continue;
            }
            table[i] = table[sieve[i]] * table[i / sieve[i]];
        }
        return table;
    }

    template <class modint> std::vector<modint> inv_table() {
        return pow_table(modint::mod() - 2);
    }
};

}  // namespace ebi
#line 2 "modint/modint.hpp"

#line 5 "modint/modint.hpp"

#line 2 "modint/base.hpp"

#include <concepts>
#line 6 "modint/base.hpp"

namespace ebi {

template <class T>
concept Modint = requires(T a, T b) {
    a + b;
    a - b;
    a * b;
    a / b;
    a.inv();
    a.val();
    a.pow(std::declval<long long>());
    T::mod();
};

template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
    long long x;
    os >> x;
    a = x;
    return os;
}

template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
    return os << a.val();
}

}  // namespace ebi
#line 7 "modint/modint.hpp"

namespace ebi {

template <int m> struct static_modint {
  private:
    using modint = static_modint;

  public:
    static constexpr int mod() {
        return m;
    }

    static constexpr modint raw(int v) {
        modint x;
        x._v = v;
        return x;
    }

    constexpr static_modint() : _v(0) {}

    constexpr static_modint(long long v) {
        v %= (long long)umod();
        if (v < 0) v += (long long)umod();
        _v = (unsigned int)v;
    }

    constexpr unsigned int val() const {
        return _v;
    }

    constexpr unsigned int value() const {
        return val();
    }

    constexpr modint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr modint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }

    constexpr modint operator++(int) {
        modint res = *this;
        ++*this;
        return res;
    }
    constexpr modint operator--(int) {
        modint res = *this;
        --*this;
        return res;
    }

    constexpr modint &operator+=(const modint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) {
        unsigned long long x = _v;
        x *= rhs._v;
        _v = (unsigned int)(x % (unsigned long long)umod());
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) {
        return *this = *this * rhs.inv();
    }

    constexpr modint operator+() const {
        return *this;
    }
    constexpr modint operator-() const {
        return modint() - *this;
    }

    constexpr modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, res = 1;
        while (n) {
            if (n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }
    constexpr modint inv() const {
        assert(_v);
        return pow(umod() - 2);
    }

    friend modint operator+(const modint &lhs, const modint &rhs) {
        return modint(lhs) += rhs;
    }
    friend modint operator-(const modint &lhs, const modint &rhs) {
        return modint(lhs) -= rhs;
    }
    friend modint operator*(const modint &lhs, const modint &rhs) {
        return modint(lhs) *= rhs;
    }

    friend modint operator/(const modint &lhs, const modint &rhs) {
        return modint(lhs) /= rhs;
    }
    friend bool operator==(const modint &lhs, const modint &rhs) {
        return lhs.val() == rhs.val();
    }
    friend bool operator!=(const modint &lhs, const modint &rhs) {
        return !(lhs == rhs);
    }

  private:
    unsigned int _v = 0;

    static constexpr unsigned int umod() {
        return m;
    }
};

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;

}  // namespace ebi
#line 2 "math/factorial_mod_998.hpp"

#line 6 "math/factorial_mod_998.hpp"

#line 8 "math/factorial_mod_998.hpp"

namespace ebi {

namespace internal {

template <Modint mint>
void enumerate_factorial_per_block(const int n, const int b) {
    std::cout << "{"
              << "1";
    mint f = 1;
    for (int i = 2; i <= n; i++) {
        f *= i;
        if (i % b == 0) {
            std::cout << ", " << f;
        }
    }
    std::cout << "}\n";
}

constexpr int BLOCK_SIZE = 1'000'000;

constexpr std::array<int, 999> fact_per_1e6 = {
    1,         373341033, 45596018,  834980587, 623627864, 428937595, 442819817,
    499710224, 833655840, 83857087,  295201906, 788488293, 671639287, 849315549,
    597398273, 813259672, 732727656, 244038325, 122642896, 310517972, 160030060,
    483239722, 683879839, 712910418, 384710263, 433880730, 844360005, 513089677,
    101492974, 959253371, 957629942, 678615452, 34035221,  56734233,  524027922,
    31729117,  102311167, 330331487, 8332991,   832392662, 545208507, 594075875,
    318497156, 859275605, 300738984, 767818091, 864118508, 878131539, 316588744,
    812496962, 213689172, 584871249, 980836133, 54096741,  417876813, 363266670,
    335481797, 730839588, 393495668, 435793297, 760025067, 811438469, 720976283,
    650770098, 586537547, 117371703, 566486504, 749562308, 708205284, 932912293,
    939830261, 983699513, 206579820, 301188781, 593164676, 770845925, 247687458,
    41047791,  266419267, 937835947, 506268060, 6177705,   936268003, 166873118,
    443834893, 328979964, 470135404, 954410105, 117565665, 832761782, 39806322,
    478922755, 394880724, 821825588, 468705875, 512554988, 232240472, 876497899,
    356048018, 895187265, 808258749, 575505950, 68190615,  939065335, 552199946,
    694814243, 385460530, 529769387, 640377761, 916128300, 440133909, 362216114,
    826373774, 502324157, 457648395, 385510728, 904737188, 78988746,  454565719,
    623828097, 686156489, 713476044, 63602402,  570334625, 681055904, 222059821,
    477211096, 343363294, 833792655, 461853093, 741797144, 74731896,  930484262,
    268372735, 941222802, 677432735, 474842829, 700451655, 400176109, 697644778,
    390377694, 790010794, 360642718, 505712943, 946647976, 339045014, 715797300,
    251680896, 70091750,  40517433,  12629586,  850635539, 110877109, 571935891,
    695965747, 634938288, 69072133,  155093216, 749696762, 963086402, 544711799,
    724471925, 334646013, 574791029, 722417626, 377929821, 743946412, 988034679,
    405207112, 18063742,  104121967, 638607426, 607304611, 751377777, 35834555,
    313632531, 18058363,  656121134, 40763559,  562910912, 495867250, 48767038,
    210864657, 659137294, 715390025, 865854329, 324322857, 388911184, 286059202,
    636456178, 421290700, 832276048, 726437551, 526417714, 252522639, 386147469,
    674313019, 274769381, 226519400, 272047186, 117153405, 712896591, 486826649,
    119444874, 338909703, 18536028,  41814114,  245606459, 140617938, 250512392,
    57084755,  157807456, 261113192, 40258068,  194807105, 325341339, 884328111,
    896332013, 880836012, 737358206, 202713771, 785454372, 399586250, 485457499,
    640827004, 546969497, 749602473, 159788463, 159111724, 218592929, 675932866,
    314795475, 811539323, 246883213, 696818315, 759880589, 4302336,   353070689,
    477909706, 559289160, 79781699,  878094972, 840903973, 367416824, 973366814,
    848259019, 462421750, 667227759, 897917455, 81800722,  956276337, 942686845,
    420541799, 417005912, 272641764, 941778993, 217214373, 192220616, 267901132,
    50530621,  652678397, 354880856, 164289049, 781023184, 105376215, 315094878,
    607856504, 733905911, 457743498, 992735713, 35212756,  231822660, 276036750,
    734558079, 424180850, 433186147, 308380947, 18333316,  12935086,  351491725,
    655645460, 535812389, 521902115, 67016984,  48682076,  64748124,  489360447,
    361275315, 786336279, 805161272, 468129309, 645091350, 887284732, 913004502,
    358814684, 281295633, 328970139, 395955130, 164840186, 820902807, 761699708,
    246274415, 592331769, 913846362, 866682684, 600130702, 903837674, 529462989,
    90612675,  526540127, 533047427, 110008879, 674279751, 801920753, 645226926,
    676886948, 752481486, 474034007, 457790341, 166813684, 287671032, 188118664,
    244731384, 404032157, 269766986, 423996017, 182948540, 356801634, 737863144,
    652014069, 206068022, 504569410, 919894484, 593398649, 963768176, 882517476,
    702523597, 949028249, 128957299, 171997372, 50865043,  20937461,  690959202,
    581356488, 369182214, 993580422, 193500140, 540665426, 365786018, 743731625,
    144980423, 979536721, 773259009, 617053935, 247670131, 843705280, 30419459,
    985463402, 261585206, 237885042, 111276893, 488166208, 137660292, 720784236,
    244467770, 26368504,  792857103, 666885724, 670313309, 905683034, 259415897,
    512017253, 826265493, 111960112, 633652060, 918048438, 516432938, 386972415,
    996212724, 610073831, 444094191, 72480267,  665038087, 11584804,  301029012,
    723617861, 113763819, 778259899, 937766095, 535448641, 593907889, 783573565,
    673298635, 599533244, 655712590, 173350007, 868198597, 169013813, 585161712,
    697502214, 573994984, 285943986, 675831407, 3134056,   965907646, 401920943,
    665949756, 236277883, 612745912, 813282113, 892454686, 901222267, 624900982,
    927122298, 686321335, 84924870,  927606072, 506664166, 353631992, 165913238,
    566073550, 816674343, 864877926, 171259407, 908752311, 874007723, 803597299,
    613676466, 880336545, 282280109, 128761001, 58852065,  474075900, 434816091,
    364856903, 149123648, 388854780, 314693916, 423183826, 419733481, 888483202,
    238933227, 336564048, 757103493, 100189123, 855479832, 51370348,  403061033,
    496971759, 831753030, 251718753, 272779384, 683379259, 488844621, 881783783,
    659478190, 445719559, 740782647, 546525906, 985524427, 548033568, 333772553,
    331916427, 752533273, 730387628, 93829695,  655989476, 930661318, 334885743,
    466041862, 428105027, 888238707, 232218076, 769865249, 730641039, 616996159,
    231721356, 326973501, 426068899, 722403656, 742756734, 663270261, 364187931,
    350431704, 671823672, 633125919, 226166717, 386814657, 237594135, 451479365,
    546182474, 119366536, 465211069, 605313606, 728508871, 249619035, 663053607,
    900453742, 48293872,  229958401, 62402409,  69570431,  71921532,  960467929,
    537087913, 514588945, 513856225, 415497414, 286592050, 645469437, 102052166,
    163298189, 873938719, 617583886, 986843080, 962390239, 580971332, 665147020,
    88900164,  89866970,  826426395, 616059995, 443012312, 659160562, 229855967,
    687413213, 59809521,  398599610, 325666688, 154765991, 159186619, 210830877,
    386454418, 84493735,  974220646, 820097297, 2191828,   481459931, 729073424,
    551556379, 926316039, 151357011, 808637654, 218058015, 786112034, 850407126,
    84202800,  94214098,  30019651,  121701603, 176055335, 865461951, 553631971,
    286620803, 984061713, 888573766, 302767023, 977070668, 110954576, 83922475,
    51568171,  60949367,  19533020,  510592752, 615419476, 341370469, 912573425,
    286207526, 206707897, 384156962, 414163604, 193301813, 749570167, 366933789,
    11470970,  600191572, 391667731, 328736286, 30645366,  215162519, 604947226,
    236199953, 718439098, 411423177, 803407599, 632441623, 766760224, 263006576,
    757681534, 61082578,  681666415, 947466395, 12206799,  659767098, 933746852,
    978860867, 59215985,  161179205, 439197472, 259779111, 511621808, 145770512,
    882749888, 943124465, 872053396, 631078482, 166861622, 743415395, 772287179,
    602427948, 924112080, 385643091, 794973480, 883782693, 869723371, 805963889,
    313106351, 262132854, 400034567, 488248149, 265769800, 791715397, 408753255,
    468381897, 415812467, 172922144, 64404368,  281500398, 512318142, 288791777,
    955559118, 242484726, 536413695, 205340854, 707803527, 576699812, 218525078,
    875554190, 46283078,  833841915, 763148293, 807722138, 788080170, 556901372,
    150896699, 253151120, 97856807,  918256774, 771557187, 582547026, 472709375,
    911615063, 743371401, 641382840, 446540967, 184639537, 157247760, 775930891,
    939702814, 499082462, 19536133,  548753627, 593243221, 563850263, 185475971,
    687419227, 396799323, 657976136, 864535682, 433009242, 860830935, 33107339,
    517661450, 467651311, 812398757, 202133852, 431839017, 709549400, 99643620,
    773282878, 290471030, 61134552,  129206504, 929147251, 837008968, 422332597,
    353775281, 469563025, 62265336,  835064501, 851685235, 21197005,  264793769,
    326416680, 118842991, 84257200,  763248924, 687559609, 150907932, 401832452,
    242726978, 766752066, 959173604, 390269102, 992293822, 744816299, 476631694,
    177284763, 702429415, 374065901, 169855231, 629007616, 719169602, 564737074,
    475119050, 714502830, 40993711,  820235888, 749063595, 239329111, 612759169,
    18591377,  419142436, 442202439, 941600951, 158013406, 637073231, 471564060,
    447222237, 701248503, 599797734, 577221870, 69656699,  51052704,  6544303,
    10958310,  554955500, 943192237, 192526269, 897983911, 961628039, 240232720,
    627280533, 710239542, 70255649,  261743865, 228474833, 776408079, 304180483,
    63607040,  953297493, 758058902, 395529997, 156010331, 825833840, 539880795,
    234683685, 52626619,  751843490, 116909119, 62806842,  574857555, 353417551,
    40061330,  822203768, 681051568, 490913702, 9322961,   766631257, 124794668,
    37844313,  163524507, 729108319, 490867505, 47035168,  682765157, 53842115,
    817965276, 757179922, 339238384, 909741023, 150530547, 158444563, 140949492,
    993302799, 551621442, 137578883, 475122706, 443869843, 605400098, 689361523,
    769596520, 801661499, 474900284, 586624857, 349960501, 134084537, 650564083,
    877097974, 379857427, 887890124, 159436401, 133274277, 986182139, 729720334,
    568925901, 459461496, 499309445, 493171177, 460958750, 380694152, 168836226,
    840160881, 141116880, 225064950, 109618190, 842341383, 85305729,  759273275,
    97369807,  669317759, 766247510, 829017039, 550323884, 261274540, 918239352,
    29606025,  870793828, 293683814, 378510746, 367270918, 481292028, 813097823,
    798448487, 230791733, 899305835, 504040630, 162510533, 479367951, 275282274,
    806951470, 462774647, 56473153,  184659008, 905122161, 664034750, 109726629,
    59372704,  325795100, 486860143, 843736533, 924723613, 880348000, 801252478,
    616515290, 776142608, 284803450, 583439582, 274826676, 6018349,   377403437,
    244041569, 527081707, 544763288, 708818585, 354033051, 904309832, 589922898,
    673933870, 682858433, 945260111, 899893421, 515264973, 911685911, 9527148,
    239480646, 524126897, 48259065,  578214879, 118677219, 786127243, 869205770,
    923276513, 937928886, 802186160, 12198440,  638784295, 34200904,  758925811,
    185027790, 80918046,  120604699, 610456697, 573601211, 208296321, 49743354,
    653691911, 490750754, 674335312, 887877110, 875880304, 308360096, 414636410,
    886100267, 8525751,   636257427, 558338775, 500159951, 696213291, 97268896,
    364983542, 937928436, 641582714, 586211304, 345265657, 994704486, 443549763,
    207259440, 302122082, 166055224, 623250998, 239642551, 476337075, 283167364,
    211328914, 68064804,  950202136, 187552679, 18938709,  646784245, 598764068,
    538505481, 610424991, 864445053, 390248689, 278395191, 686098470, 935957187,
    868529577, 329970687, 804930040, 84992079,  474569269, 810762228, 573258936,
    756464212, 155080225, 286966169, 283614605, 19283401,  24257676,  871831819,
    612689791, 846988741, 617120754, 971716517, 979541482, 297910784, 991087897,
    783825907, 214821357, 689498189, 405026419, 946731704, 609346370, 707669156,
    457703127, 957341187, 980735523, 649367684, 791011898, 82098966,  234729712,
    105002711, 130614285, 291032164, 193188049, 363211260, 58108651,  100756444,
    954947696, 346032213, 863300806, 36876722,  622610957, 289232396, 667938985,
    734886266, 395881057, 417188702, 183092975, 887586469, 83334648,  797819763,
    100176902, 781587414, 841864935, 371674670, 18247584};

}  // namespace internal

int factorial_mod_998(int n) {
    constexpr int MOD = 998244353;
    if (n >= MOD) {
        return 0;
    }
    using internal::BLOCK_SIZE;
    int res = internal::fact_per_1e6[n / BLOCK_SIZE];
    for (int i = (n / BLOCK_SIZE) * BLOCK_SIZE + 1; i <= n; i++) {
        res = (long long)res * i % MOD;
    }
    return res;
}

}  // namespace ebi
#line 8 "test/yuki/yuki_2747.test.cpp"

namespace ebi {

using mint = modint998244353;

void main_() {
    int n,k;
    std::cin >> n >> k;
    linear_sieve sieve(k + 5);
    auto f = [&](int s) -> mint {
        std::vector<mint> f(s+2, 0);
        auto pow_table = sieve.pow_table<mint>(s);
        rep(i,1,s+2) {
            f[i] = f[i-1] + pow_table[i];
        }
        return lagrange_interpolation(f, n-1);
    };
    mint ans = factorial_mod_998(n-1) * 2 * (n * f(k) - f(k+1));
    std::cout << ans << '\n';
}

}  // namespace ebi

int main() {
    ebi::fast_io();
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
0