結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー | hiikunZ |
提出日時 | 2024-04-20 19:52:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 57,621 bytes |
コンパイル時間 | 4,768 ms |
コンパイル使用メモリ | 330,320 KB |
実行使用メモリ | 105,688 KB |
最終ジャッジ日時 | 2024-10-12 17:48:31 |
合計ジャッジ時間 | 16,314 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
コンパイルメッセージ
main.cpp:426:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 426 | montgomery_sub_256(const __m256i &a,const __m256i &b,const __m256i &m2, | ^~~~~~~~~~~~~~~~~~ main.cpp:418:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 418 | montgomery_add_256(const __m256i &a,const __m256i &b,const __m256i &m2, | ^~~~~~~~~~~~~~~~~~ main.cpp:410:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 410 | montgomery_mul_256(const __m256i &a,const __m256i &b,const __m256i &r, | ^~~~~~~~~~~~~~~~~~ main.cpp:399:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 399 | my256_mulhi_epu32(const __m256i &a,const __m256i &b) { | ^~~~~~~~~~~~~~~~~ main.cpp:394:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 394 | my256_mullo_epu32(const __m256i &a,const __m256i &b) { | ^~~~~~~~~~~~~~~~~ main.cpp:387:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 387 | montgomery_sub_128(const __m128i &a,const __m128i &b,const __m128i &m2, | ^~~~~~~~~~~~~~~~~~ main.cpp:380:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 380 | montgomery_add_128(const __m128i &a,const __m128i &b,const __m128i &m2, | ^~~~~~~~~~~~~~~~~~ main.cpp:372:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 372 | montgomery_mul_128(const __m128i &a,const __m128i &b,const __m128i &r, | ^~~~~~~~~~~~~~~~~~ main.cpp:361:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 361 | my128_mulhi_epu32(const __m128i &a,const __m128i &b) { | ^~~~~~~~~~~~~~~~~ main.cpp:356:1: warning: 'always_inline' function might not be inlinable [-Wattributes] 356 | my128_mullo_epu32(const __m128i &a,const __m128i &b) { | ^~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> using namespace std; //#include<atcoder/math> //using namespace atcoder; using ll = long long int; using ull = unsigned long long int; using ld = long double; constexpr ll MAX = 2000000000000000000; constexpr ld PI = 3.14159265358979; constexpr ll MOD = 998244353;//2024948111; ld dotorad(ld K){ return PI * K / 180.0; } ld radtodo(ld K){ return K * 180.0 / PI; } mt19937 mt; void randinit(){ srand((unsigned)time(NULL));mt = mt19937(rand()); } ll modpow(ll A,ll B,ll M){ ll r = 1,p = A; while(B > 0){ if(B % 2 == 1) r = (r * p) % M; p = (p * p) % M; B /= 2; } return r; } vector<ll> fac,finv,inv; void COMinit(ll n = 1000000){ fac.resize(n); finv.resize(n); inv.resize(n); inv[1] = 1; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; ll i; for(i = 2;i < n;i++){ fac[i] = (fac[i - 1] * i) % MOD; inv[i] = MOD - ((inv[MOD % i] * (MOD / i)) % MOD); finv[i] = (finv[i - 1] * inv[i]) % MOD; } } ll COM(ll n,ll m){ //nCm if(n < m) return 0; if(n < 0 || m < 0) return 0; return (fac[n] * (finv[m] * finv[n - m] % MOD)) % MOD; } ll f(ll a,ll b){ return COM(a + b,a); } // https://judge.yosupo.jp/submission/17797 #pragma region kyopro_template #define Nyaan_template #include <immintrin.h> #include <bits/stdc++.h> #define pb push_back #define eb emplace_back #define fi first #define se second #define each(x, v) for (auto &x : v) #define all(v) (v).begin(), (v).end() #define sz(v) ((int)(v).size()) #define mem(a, val) memset(a, val, sizeof(a)) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define die(...) \ do { \ out(__VA_ARGS__); \ return; \ } while (0) using namespace std; using ll = long long; template <class T> using V = vector<T>; using vi = vector<int>; using vl = vector<long long>; using vvi = vector<vector<int>>; using vd = V<double>; using vs = V<string>; using vvl = vector<vector<long long>>; using P = pair<long long,long long>; using vp = vector<P>; using pii = pair<int,int>; using vpi = vector<pair<int,int>>; constexpr int inf = 1001001001; constexpr long long infLL = (1LL << 61) - 1; template <typename T,typename U> inline bool amin(T &x,U y) { return (y < x) ? (x = y,true) : false; } template <typename T,typename U> inline bool amax(T &x,U y) { return (x < y) ? (x = y,true) : false; } template <typename T,typename U> ostream &operator<<(ostream &os,const pair<T,U> &p) { os << p.first << " " << p.second; return os; } template <typename T,typename U> istream &operator>>(istream &is,pair<T,U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os,const vector<T> &v) { int s = (int)v.size(); for(int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is,vector<T> &v) { for(auto &x : v) is >> x; return is; } void in() {} template <typename T,class... U> void in(T &t,U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T,class... U> void out(const T &t,const U &... u) { cout << t; if(sizeof...(u)) cout << " "; out(u...); } #ifdef NyaanDebug #define trc(...) \ do { \ cerr << #__VA_ARGS__ << " = "; \ dbg_out(__VA_ARGS__); \ } while (0) #define trca(v, N) \ do { \ cerr << #v << " = "; \ array_out(v, N); \ } while (0) #define trcc(v) \ do { \ cerr << #v << " = {"; \ each(x, v) { cerr << " " << x << ","; } \ cerr << "}" << endl; \ } while (0) template <typename T> void _cout(const T &c) { cerr << c; } void _cout(const int &c) { if(c == 1001001001) cerr << "inf"; else if(c == -1001001001) cerr << "-inf"; else cerr << c; } void _cout(const unsigned int &c) { if(c == 1001001001) cerr << "inf"; else cerr << c; } void _cout(const long long &c) { if(c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else if(c == -1001001001 || c == -((1LL << 61) - 1)) cerr << "-inf"; else cerr << c; } void _cout(const unsigned long long &c) { if(c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else cerr << c; } template <typename T,typename U> void _cout(const pair<T,U> &p) { cerr << "{ "; _cout(p.fi); cerr << ", "; _cout(p.se); cerr << " } "; } template <typename T> void _cout(const vector<T> &v) { int s = v.size(); cerr << "{ "; for(int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } "; } template <typename T> void _cout(const vector<vector<T>> &v) { cerr << "[ "; for(const auto &x : v) { cerr << endl; _cout(x); cerr << ", "; } cerr << endl << " ] "; } void dbg_out() { cerr << endl; } template <typename T,class... U> void dbg_out(const T &t,const U &... u) { _cout(t); if(sizeof...(u)) cerr << ", "; dbg_out(u...); } template <typename T> void array_out(const T &v,int s) { cerr << "{ "; for(int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } " << endl; } template <typename T> void array_out(const T &v,int H,int W) { cerr << "[ "; for(int i = 0; i < H; i++) { cerr << (i ? ", " : ""); array_out(v[i],W); } cerr << " ] " << endl; } #else #define trc(...) #define trca(...) #define trcc(...) #endif inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); } inline int lsb(unsigned long long a) { return __builtin_ctzll(a); } inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); } template <typename T> inline int getbit(T a,int i) { return (a >> i) & 1; } template <typename T> inline void setbit(T &a,int i) { a |= (1LL << i); } template <typename T> inline void delbit(T &a,int i) { a &= ~(1LL << i); } template <typename T> int lb(const vector<T> &v,const T &a) { return lower_bound(begin(v),end(v),a) - begin(v); } template <typename T> int ub(const vector<T> &v,const T &a) { return upper_bound(begin(v),end(v),a) - begin(v); } template <typename T> int btw(T a,T x,T b) { return a <= x && x < b; } template <typename T,typename U> T ceil(T a,U b) { return (a + b - 1) / b; } constexpr long long TEN(int n) { long long ret = 1,x = 10; while(n) { if(n & 1) ret *= x; x *= x; n >>= 1; } return ret; } template <typename T> vector<T> mkrui(const vector<T> &v) { vector<T> ret(v.size() + 1); for(int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(),ret.end()); ret.erase(unique(ret.begin(),ret.end()),ret.end()); return ret; } template <typename F> vector<int> mkord(int N,F f) { vector<int> ord(N); iota(begin(ord),end(ord),0); sort(begin(ord),end(ord),f); return ord; } template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret),end(ret),0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v) { vector<int> inv(v.size()); for(int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; #pragma endregion using namespace std; using namespace std; using namespace std; __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mullo_epu32(const __m128i &a,const __m128i &b) { return _mm_mullo_epi32(a,b); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mulhi_epu32(const __m128i &a,const __m128i &b) { __m128i a13 = _mm_shuffle_epi32(a,0xF5); __m128i b13 = _mm_shuffle_epi32(b,0xF5); __m128i prod02 = _mm_mul_epu32(a,b); __m128i prod13 = _mm_mul_epu32(a13,b13); __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02,prod13), _mm_unpackhi_epi32(prod02,prod13)); return prod; } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_mul_128(const __m128i &a,const __m128i &b,const __m128i &r, const __m128i &m1) { return _mm_sub_epi32( _mm_add_epi32(my128_mulhi_epu32(a,b),m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a,b),r),m1)); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_add_128(const __m128i &a,const __m128i &b,const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(_mm_add_epi32(a,b),m2); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0,ret),m2),ret); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_sub_128(const __m128i &a,const __m128i &b,const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(a,b); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0,ret),m2),ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mullo_epu32(const __m256i &a,const __m256i &b) { return _mm256_mullo_epi32(a,b); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mulhi_epu32(const __m256i &a,const __m256i &b) { __m256i a13 = _mm256_shuffle_epi32(a,0xF5); __m256i b13 = _mm256_shuffle_epi32(b,0xF5); __m256i prod02 = _mm256_mul_epu32(a,b); __m256i prod13 = _mm256_mul_epu32(a13,b13); __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02,prod13), _mm256_unpackhi_epi32(prod02,prod13)); return prod; } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_mul_256(const __m256i &a,const __m256i &b,const __m256i &r, const __m256i &m1) { return _mm256_sub_epi32( _mm256_add_epi32(my256_mulhi_epu32(a,b),m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a,b),r),m1)); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_add_256(const __m256i &a,const __m256i &b,const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a,b),m2); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0,ret),m2), ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_sub_256(const __m256i &a,const __m256i &b,const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(a,b); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0,ret),m2), ret); } constexpr int SZ = 1 << 19; uint32_t buf1_[SZ * 2] __attribute__((aligned(64))); uint32_t buf2_[SZ * 2] __attribute__((aligned(64))); template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = mod - 1; for(u64 i = 2; i * i <= m; ++i) { if(m % i == 0) { ds[idx++] = i; while(m % i == 0) m /= i; } } if(m != 1) ds[idx++] = m; uint32_t pr = 2; while(1) { int flg = 1; for(int i = 0; i < idx; ++i) { u64 a = pr,b = (mod - 1) / ds[i],r = 1; while(b) { if(b & 1) r = r * a % mod; a = a * a % mod; b >>= 1; } if(r == 1) { flg = 0; break; } } if(flg == 1) break; ++pr; } return pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level],dy[level]; mint *buf1,*buf2; constexpr NTT() { setwy(level); buf1 = reinterpret_cast<mint *>(::buf1_); buf2 = reinterpret_cast<mint *>(::buf2_); } constexpr void setwy(int k) { mint w[level],y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for(int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1],y[i] = y[i + 1] * y[i + 1]; dw[0] = dy[0] = w[1] * w[1]; dw[1] = w[1],dy[1] = y[1],dw[2] = w[2],dy[2] = y[2]; for(int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } __attribute__((target("avx2"))) void ntt(mint *a,int n) { int k = n ? __builtin_ctz(n) : 0; if(k == 0) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if(k & 1) { int v = 1 << (k - 1); if(v < 8) { for(int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for(; j0 < v; j0 += 8,j1 += 8) { __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0,T1,m2,m0); __m256i najv = montgomery_sub_256(T0,T1,m2,m0); _mm256_storeu_si256((__m256i *)(a + j0),naj); _mm256_storeu_si256((__m256i *)(a + j1),najv); } } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while(v) { if(v == 1) { mint ww = one,xx = one,wx = one; for(int jh = 0; jh < u;) { ww = xx * xx,wx = ww * xx; mint t0 = a[jh + 0],t1 = a[jh + 1] * xx; mint t2 = a[jh + 2] * ww,t3 = a[jh + 3] * wx; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[jh + 0] = t0p2 + t1p3,a[jh + 1] = t0p2 - t1p3; a[jh + 2] = t0m2 + t1m3,a[jh + 3] = t0m2 - t1m3; xx *= dw[__builtin_ctz((jh += 4))]; } } else if(v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one,xx = one,wx = one; for(int jh = 0; jh < u;) { if(jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for(; j0 < je; j0 += 4,j1 += 4,j2 += 4,j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P2 = montgomery_add_128(T0,T2,m2,m0); const __m128i T1P3 = montgomery_add_128(T1,T3,m2,m0); const __m128i T0M2 = montgomery_sub_128(T0,T2,m2,m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(T1,T3,m2,m0),Imag,r,m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2,T1P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2,T1P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2,T1M3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2,T1M3,m2,m0)); } } else { ww = xx * xx,wx = ww * xx; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i WX = _mm_set1_epi32(wx.a); const __m128i XX = _mm_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for(; j0 < je; j0 += 4,j1 += 4,j2 += 4,j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i MT1 = montgomery_mul_128(T1,XX,r,m1); const __m128i MT2 = montgomery_mul_128(T2,WW,r,m1); const __m128i MT3 = montgomery_mul_128(T3,WX,r,m1); const __m128i T0P2 = montgomery_add_128(T0,MT2,m2,m0); const __m128i T1P3 = montgomery_add_128(MT1,MT3,m2,m0); const __m128i T0M2 = montgomery_sub_128(T0,MT2,m2,m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(MT1,MT3,m2,m0),Imag,r,m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2,T1P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2,T1P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2,T1M3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2,T1M3,m2,m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one,xx = one,wx = one; for(int jh = 0; jh < u;) { if(jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for(; j0 < je; j0 += 8,j1 += 8,j2 += 8,j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P2 = montgomery_add_256(T0,T2,m2,m0); const __m256i T1P3 = montgomery_add_256(T1,T3,m2,m0); const __m256i T0M2 = montgomery_sub_256(T0,T2,m2,m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(T1,T3,m2,m0),Imag,r,m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2,T1P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2,T1P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2,T1M3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2,T1M3,m2,m0)); } } else { ww = xx * xx,wx = ww * xx; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i WX = _mm256_set1_epi32(wx.a); const __m256i XX = _mm256_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for(; j0 < je; j0 += 8,j1 += 8,j2 += 8,j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i MT1 = montgomery_mul_256(T1,XX,r,m1); const __m256i MT2 = montgomery_mul_256(T2,WW,r,m1); const __m256i MT3 = montgomery_mul_256(T3,WX,r,m1); const __m256i T0P2 = montgomery_add_256(T0,MT2,m2,m0); const __m256i T1P3 = montgomery_add_256(MT1,MT3,m2,m0); const __m256i T0M2 = montgomery_sub_256(T0,MT2,m2,m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(MT1,MT3,m2,m0),Imag,r,m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2,T1P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2,T1P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2,T1M3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2,T1M3,m2,m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } u <<= 2; v >>= 2; } } __attribute__((target("avx2"))) void intt(mint *a,int n, int normalize = true) { int k = n ? __builtin_ctz(n) : 0; if(k == 0) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; if(normalize) { a[0] *= mint(2).inverse(); a[1] *= mint(2).inverse(); } return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while(u) { if(v == 1) { mint ww = one,xx = one,yy = one; u <<= 2; for(int jh = 0; jh < u;) { ww = xx * xx,yy = xx * imag; mint t0 = a[jh + 0],t1 = a[jh + 1]; mint t2 = a[jh + 2],t3 = a[jh + 3]; mint t0p1 = t0 + t1,t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx,t2m3 = (t2 - t3) * yy; a[jh + 0] = t0p1 + t2p3,a[jh + 2] = (t0p1 - t2p3) * ww; a[jh + 1] = t0m1 + t2m3,a[jh + 3] = (t0m1 - t2m3) * ww; xx *= dy[__builtin_ctz(jh += 4)]; } } else if(v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one,xx = one,yy = one; u <<= 2; for(int jh = 0; jh < u;) { if(jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for(; j0 < v; j0 += 4,j1 += 4,j2 += 4,j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0,T1,m2,m0); const __m128i T2P3 = montgomery_add_128(T2,T3,m2,m0); const __m128i T0M1 = montgomery_sub_128(T0,T1,m2,m0); const __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2,T3,m2,m0),Imag,r,m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1,T2P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_sub_128(T0P1,T2P3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1,T2M3,m2,m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M1,T2M3,m2,m0)); } } else { ww = xx * xx,yy = xx * imag; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i XX = _mm_set1_epi32(xx.a); const __m128i YY = _mm_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for(; j0 < je; j0 += 4,j1 += 4,j2 += 4,j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0,T1,m2,m0); const __m128i T2P3 = montgomery_add_128(T2,T3,m2,m0); const __m128i T0M1 = montgomery_mul_128( montgomery_sub_128(T0,T1,m2,m0),XX,r,m1); __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2,T3,m2,m0),YY,r,m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1,T2P3,m2,m0)); _mm_storeu_si128( (__m128i *)(a + j2), montgomery_mul_128(montgomery_sub_128(T0P1,T2P3,m2,m0),WW, r,m1)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1,T2M3,m2,m0)); _mm_storeu_si128( (__m128i *)(a + j3), montgomery_mul_128(montgomery_sub_128(T0M1,T2M3,m2,m0),WW, r,m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one,xx = one,yy = one; u <<= 2; for(int jh = 0; jh < u;) { if(jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for(; j0 < v; j0 += 8,j1 += 8,j2 += 8,j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0,T1,m2,m0); const __m256i T2P3 = montgomery_add_256(T2,T3,m2,m0); const __m256i T0M1 = montgomery_sub_256(T0,T1,m2,m0); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2,T3,m2,m0),Imag,r,m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1,T2P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_sub_256(T0P1,T2P3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1,T2M3,m2,m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M1,T2M3,m2,m0)); } } else { ww = xx * xx,yy = xx * imag; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i XX = _mm256_set1_epi32(xx.a); const __m256i YY = _mm256_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for(; j0 < je; j0 += 8,j1 += 8,j2 += 8,j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0,T1,m2,m0); const __m256i T2P3 = montgomery_add_256(T2,T3,m2,m0); const __m256i T0M1 = montgomery_mul_256( montgomery_sub_256(T0,T1,m2,m0),XX,r,m1); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2,T3,m2,m0),YY,r,m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1,T2P3,m2,m0)); _mm256_storeu_si256( (__m256i *)(a + j2), montgomery_mul_256(montgomery_sub_256(T0P1,T2P3,m2,m0),WW, r,m1)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1,T2M3,m2,m0)); _mm256_storeu_si256( (__m256i *)(a + j3), montgomery_mul_256(montgomery_sub_256(T0M1,T2M3,m2,m0),WW, r,m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } u >>= 4; v <<= 2; } if(k & 1) { v = 1 << (k - 1); if(v < 8) { for(int j = 0; j < v; ++j) { mint ajv = a[j] - a[j + v]; a[j] += a[j + v]; a[j + v] = ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for(; j0 < v; j0 += 8,j1 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0,T1,m2,m0); __m256i najv = montgomery_sub_256(T0,T1,m2,m0); _mm256_storeu_si256((__m256i *)(a + j0),naj); _mm256_storeu_si256((__m256i *)(a + j1),najv); } } } if(normalize) { mint invn = mint(n).inverse(); for(int i = 0; i < n; i++) a[i] *= invn; } } __attribute__((target("avx2"))) void inplace_multiply( int l1,int l2,int zero_padding = true) { int l = l1 + l2 - 1; int M = 4; while(M < l) M <<= 1; if(zero_padding) { for(int i = l1; i < M; i++) buf1_[i] = 0; for(int i = l2; i < M; i++) buf2_[i] = 0; } const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i N2 = _mm256_set1_epi32(mint::n2); for(int i = 0; i < l1; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a,N2,r,m1); _mm256_storeu_si256((__m256i *)(buf1_ + i),b); } for(int i = 0; i < l2; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i b = montgomery_mul_256(a,N2,r,m1); _mm256_storeu_si256((__m256i *)(buf2_ + i),b); } ntt(buf1,M); ntt(buf2,M); for(int i = 0; i < M; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i c = montgomery_mul_256(a,b,r,m1); _mm256_storeu_si256((__m256i *)(buf1_ + i),c); } intt(buf1,M,false); const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a); for(int i = 0; i < l; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a,INVM,r,m1); __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b,r),m1); __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c,m0),m1); __m256i e = _mm256_sub_epi32(d,c); _mm256_storeu_si256((__m256i *)(buf1_ + i),e); } } void ntt(vector<mint> &a) { int M = (int)a.size(); for(int i = 0; i < M; i++) buf1[i].a = a[i].a; ntt(buf1,M); for(int i = 0; i < M; i++) a[i].a = buf1[i].a; } void intt(vector<mint> &a) { int M = (int)a.size(); for(int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1,M,true); for(int i = 0; i < M; i++) a[i].a = buf1[i].a; } vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) { int l = a.size() + b.size() - 1; if(min<int>(a.size(),b.size()) <= 40) { vector<mint> s(l); for(int i = 0; i < (int)a.size(); ++i) for(int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int M = 4; while(M < l) M <<= 1; for(int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a; for(int i = (int)a.size(); i < M; ++i) buf1[i].a = 0; for(int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a; for(int i = (int)b.size(); i < M; ++i) buf2[i].a = 0; ntt(buf1,M); ntt(buf2,M); for(int i = 0; i < M; ++i) buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a); intt(buf1,M,false); vector<mint> s(l); mint invm = mint(M).inverse(); for(int i = 0; i < l; ++i) s[i] = buf1[i] * invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); for(int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1,M); mint r = 1,zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for(int i = 0; i < M; i++) buf1[i] *= r,r *= zeta; ntt(buf1,M); a.resize(2 * M); for(int i = 0; i < M; i++) a[M + i].a = buf1[i].a; } };using namespace std; template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for(int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for(int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while(this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret),end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(),r.size())); for(int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this),begin(*this) + min((int)this->size(),sz)); } FPS operator>>(int sz) const { if((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(),ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(),sz,mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0,n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * mint(i); return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / mint(i + 1); return ret; } mint eval(mint x) const { mint r = 0,w = 1; for(auto &v : *this) r += w * v,w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if(deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k,int deg = -1) const { const int n = (int)this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != mint(0)) { if(i * k > deg) return FPS(deg,mint(0)); mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if((int)ret.size() < deg) ret.resize(deg,mint(0)); return ret; } } return FPS(deg,mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/formal-power-series.md */ template <typename mint> void FormalPowerSeries<mint>::set_fft() { if(!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if(this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this,r); return *this = FormalPowerSeries<mint>(ret.begin(),ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if(deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for(int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d),g(2 * d); for(int j = 0; j < min((int)this->size(),2 * d); j++) f[j] = (*this)[j]; for(int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for(int j = 0; j < d; j++) f[j] = 0; f.ntt(); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for(int j = d; j < min(2 * d,deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { assert((*this).size() == 0 || (*this)[0] == mint(0)); if(deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> ret({mint(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } using namespace std; template <typename T> struct Binomial { vector<T> fac_,finv_,inv_; Binomial(int MAX): fac_(MAX + 10),finv_(MAX + 10),inv_(MAX + 10) { MAX += 9; fac_[0] = finv_[0] = inv_[0] = 1; for(int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i; finv_[MAX] = fac_[MAX].inverse(); for(int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1); for(int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1]; } inline T fac(int i) const { return fac_[i]; } inline T finv(int i) const { return finv_[i]; } inline T inv(int i) const { return inv_[i]; } T C(int n,int r) const { if(n < r || r < 0) return T(0); return fac_[n] * finv_[n - r] * finv_[r]; } T C_naive(int n,int r) const { if(n < r || r < 0) return T(0); T ret = 1; for(T i = 1; i <= r; i += T(1)) { ret *= n--; ret *= i.inverse(); } return ret; } T P(int n,int r) const { if(n < r || r < 0) return T(0); return fac_[n] * finv_[n - r]; } T H(int n,int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1,r); } }; // calculate F(x + a) template <typename mint> FormalPowerSeries<mint> TaylorShift(FormalPowerSeries<mint> f,mint a, Binomial<mint>& C) { using fps = FormalPowerSeries<mint>; assert(C.fac_.size() >= f.size() + 1); int N = f.size(); for(int i = 0; i < N; i++) f[i] *= C.fac(i); reverse(begin(f),end(f)); fps g(N,mint(1)); for(int i = 1; i < N; i++) g[i] = g[i - 1] * a * C.inv(i); f = (f * g).pre(N); reverse(begin(f),end(f)); for(int i = 0; i < N; i++) f[i] *= C.finv(i); return f; } /** * @brief 平行移動 * @docs docs/fps-taylor-shift.md */ using namespace std; namespace fastio { static constexpr int SZ = 1 << 17; char ibuf[SZ],obuf[SZ]; int pil = 0,pir = 0,por = 0; struct Pre { char num[40000]; constexpr Pre(): num() { for(int i = 0; i < 10000; i++) { int n = i; for(int j = 3; j >= 0; j--) { num[i * 4 + j] = n % 10 + '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf,ibuf + pil,pir - pil); pir = pir - pil + fread(ibuf + pir - pil,1,SZ - pir + pil,stdin); pil = 0; } inline void flush() { fwrite(obuf,1,por,stdout); por = 0; } inline void rd(char& c) { c = ibuf[pil++]; } template <typename T> inline void rd(T& x) { if(pil + 32 > pir) load(); char c; do c = ibuf[pil++]; while(c < '-'); bool minus = 0; if(c == '-') { minus = 1; c = ibuf[pil++]; } x = 0; while(c >= '0') { x = x * 10 + (c & 15); c = ibuf[pil++]; } if(minus) x = -x; } inline void wt(char c) { obuf[por++] = c; } template <typename T> inline void wt(T x) { if(por > SZ - 32) flush(); if(!x) { obuf[por++] = '0'; return; } if(x < 0) { obuf[por++] = '-'; x = -x; } int i = 12; char buf[16]; while(x >= 10000) { memcpy(buf + i,pre.num + (x % 10000) * 4,4); x /= 10000; i -= 4; } int d = x < 100 ? (x < 10 ? 1 : 2) : (x < 1000 ? 3 : 4); memcpy(obuf + por,pre.num + x * 4 + 4 - d,d); por += d; memcpy(obuf + por,buf + i + 4,12 - i); por += 12 - i; } struct Dummy { Dummy() { atexit(flush); } } dummy; } // namespace fastio using fastio::rd; using fastio::wt; using namespace std; template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for(i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1,"invalid, r * mod != 1"); static_assert(mod < (1 << 30),"invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1,"invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt(): a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if(i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if(i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1),mul(*this); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os,const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is,mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename mint> FormalPowerSeries<mint> Stirling1st(int N,Binomial<mint> &C) { using fps = FormalPowerSeries<mint>; if(N <= 0) return fps{1}; int lg = 31 - __builtin_clz(N); fps f = {0, 1}; for(int i = lg - 1; i >= 0; i--) { int n = N >> i; f *= TaylorShift(f,mint(n >> 1),C); if(n & 1) f = (f << 1) + f * (n - 1); } return f; } template <typename mint> FormalPowerSeries<mint> Stirling2nd(int N,Binomial<mint> &C) { using fps = FormalPowerSeries<mint>; fps f(N + 1),g(N + 1); for(int i = 0; i <= N; i++) { f[i] = mint(i).pow(N) * C.finv(i); g[i] = (i & 1) ? -C.finv(i) : C.finv(i); } return (f * g).pre(N + 1); } template <typename mint> FormalPowerSeries<mint> BernoulliEGF(int N,Binomial<mint> &C) { using fps = FormalPowerSeries<mint>; fps f(N + 1); for(int i = 0; i <= N; i++) f[i] = C.finv(i + 1); return f.inv(N + 1); } template <typename mint> FormalPowerSeries<mint> SamplePointShift(FormalPowerSeries<mint>& y,mint t, int m = -1) { if(m == -1) m = y.size(); long long T = t.get(); int k = (int)y.size() - 1; T %= mint::get_mod(); if(T <= k) { FormalPowerSeries<mint> ret(m); int ptr = 0; for(int64_t i = T; i <= k and ptr < m; i++) { ret[ptr++] = y[i]; } if(k + 1 < T + m) { auto suf = SamplePointShift<mint>(y,k + 1,m - ptr); for(int i = k + 1; i < T + m; i++) { ret[ptr++] = suf[i - (k + 1)]; } } return ret; } if(T + m > mint::get_mod()) { auto pref = SamplePointShift<mint>(y,T,mint::get_mod() - T); auto suf = SamplePointShift<mint>(y,0,m - pref.size()); copy(begin(suf),end(suf),back_inserter(pref)); return pref; } FormalPowerSeries<mint> finv(k + 1,1),d(k + 1); for(int i = 2; i <= k; i++) finv[k] *= i; finv[k] = mint(1) / finv[k]; for(int i = k; i >= 1; i--) finv[i - 1] = finv[i] * i; for(int i = 0; i <= k; i++) { d[i] = finv[i] * finv[k - i] * y[i]; if((k - i) & 1) d[i] = -d[i]; } FormalPowerSeries<mint> h(m + k); for(int i = 0; i < m + k; i++) { h[i] = mint(1) / (T - k + i); } auto dh = d * h; FormalPowerSeries<mint> ret(m); mint cur = T; for(int i = 1; i <= k; i++) cur *= T - i; for(int i = 0; i < m; i++) { ret[i] = cur * dh[k + i]; cur *= T + i + 1; cur *= h[i]; } return ret; } ll modinv(ll A,ll M){ //A*r+B*n=gcd(A,B) A %= M; if(A == 0 || __gcd(A,M) != 1){ //cout << "Error modinv(" << A << "," << M << ")" << endl; return -1; } ll B = M,U = 1,V = 0; while(B){ ll T = A / B; A -= T * B; swap(A,B); U -= T * V; swap(U,V); } U %= M; if(U < 0) U += M; return U; } template <typename mint> mint factorial(int n) { if(n <= 1) return 1; using fps = FormalPowerSeries<mint>; long long v = 1; while(v * v < n) v *= 2; mint iv = mint(v).inverse(); fps G{1, v + 1}; for(long long d = 1; d != v; d <<= 1) { fps G1 = SamplePointShift(G,mint(d) * iv); fps G2 = SamplePointShift(G,mint(d * v + v) * iv); fps G3 = SamplePointShift(G,mint(d * v + d + v) * iv); for(int i = 0; i <= d; i++) G[i] *= G1[i],G2[i] *= G3[i]; copy(begin(G2),end(G2) - 1,back_inserter(G)); } mint res = 1; long long i = 0; while(i + v <= n) res *= G[i / v],i += v; while(i < n) res *= ++i; return res; } int main(){ constexpr int MOD9 = 998244353; using mint = LazyMontgomeryModInt<MOD9>; Binomial<mint> C(1530000); auto seq = BernoulliEGF(1000010,C); vector<ll> B(1000010); for(int i = 0; i < 1000010; i++) { B[i] = ((seq[i] * C.fac(i)).get()); } wt('\n'); ll N,M; ll n,k; cin >> N >> M; n = N; k = M; N -= 1; /*for(ll i = 0;i <= N;i++){ for(ll j = 0;j <= K;j++){ ll x = 0; for(ll p = 1;p < i;p++){ x += modpow(p,j,MOD) * (i - p); } cout << x << " "; } cout << endl; }*/ COMinit(2500000); ll a1 = 0; vector<ll> modp(M + 200,1); for(ll i = 1;i <= M + 100;i++) modp[i] = (modp[i - 1] * (N + 1 % MOD9)) % MOD9; for(ll i = 0;i <= M;i++){ ll x = COM(M + 1,i) * B[i] % MOD9; x *= modp[M + 1 - i]; x %= MOD9; a1 += x; a1 %= MOD9; if(a1 < 0) a1 += MOD9; } a1 *= N + 1; a1 %= MOD9; a1 *= modinv(M + 1,MOD9); a1 %= MOD9; ll a2 = 0; for(ll i = 0;i <= M + 1;i++){ ll x = COM(M + 2,i) * B[i] % MOD9; x *= modp[M + 2 - i]; x %= MOD9; a2 += x; a2 %= MOD9; if(a2 < 0) a2 += MOD9; } a2 *= modinv(M + 2,MOD9); a2 %= MOD9; if(a2 < 0) a2 += MOD9; ll ans = a1 - a2; ans %= MOD9; if(ans < 0) ans += MOD9; cerr << ans << endl; ans *= factorial<mint>(n - 1).get(); //for(ll i = 1;i <= n - 1;i++) ans = (ans * i) % MOD; ans *= 2; ans %= MOD; wt(ans); }