結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー | noya2 |
提出日時 | 2024-04-21 01:40:29 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 252 ms / 3,000 ms |
コード長 | 18,756 bytes |
コンパイル時間 | 3,264 ms |
コンパイル使用メモリ | 259,208 KB |
実行使用メモリ | 32,740 KB |
最終ジャッジ日時 | 2024-10-13 00:06:04 |
合計ジャッジ時間 | 9,862 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 127 ms
13,876 KB |
testcase_01 | AC | 55 ms
6,820 KB |
testcase_02 | AC | 88 ms
12,308 KB |
testcase_03 | AC | 35 ms
6,820 KB |
testcase_04 | AC | 135 ms
18,112 KB |
testcase_05 | AC | 252 ms
32,676 KB |
testcase_06 | AC | 156 ms
18,424 KB |
testcase_07 | AC | 127 ms
13,816 KB |
testcase_08 | AC | 151 ms
20,516 KB |
testcase_09 | AC | 251 ms
31,124 KB |
testcase_10 | AC | 58 ms
8,884 KB |
testcase_11 | AC | 106 ms
13,892 KB |
testcase_12 | AC | 32 ms
6,816 KB |
testcase_13 | AC | 57 ms
9,476 KB |
testcase_14 | AC | 168 ms
19,652 KB |
testcase_15 | AC | 221 ms
30,860 KB |
testcase_16 | AC | 120 ms
14,036 KB |
testcase_17 | AC | 199 ms
22,424 KB |
testcase_18 | AC | 194 ms
21,996 KB |
testcase_19 | AC | 24 ms
7,296 KB |
testcase_20 | AC | 148 ms
18,088 KB |
testcase_21 | AC | 190 ms
20,436 KB |
testcase_22 | AC | 194 ms
21,020 KB |
testcase_23 | AC | 89 ms
13,076 KB |
testcase_24 | AC | 131 ms
13,352 KB |
testcase_25 | AC | 96 ms
12,024 KB |
testcase_26 | AC | 164 ms
19,788 KB |
testcase_27 | AC | 163 ms
20,664 KB |
testcase_28 | AC | 147 ms
20,304 KB |
testcase_29 | AC | 108 ms
18,156 KB |
testcase_30 | AC | 239 ms
32,740 KB |
testcase_31 | AC | 243 ms
32,736 KB |
testcase_32 | AC | 236 ms
32,736 KB |
testcase_33 | AC | 250 ms
32,736 KB |
testcase_34 | AC | 239 ms
32,736 KB |
testcase_35 | AC | 6 ms
6,820 KB |
testcase_36 | AC | 6 ms
6,820 KB |
testcase_37 | AC | 5 ms
6,820 KB |
testcase_38 | AC | 6 ms
6,816 KB |
testcase_39 | AC | 6 ms
6,820 KB |
testcase_40 | AC | 6 ms
6,820 KB |
testcase_41 | AC | 6 ms
6,816 KB |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(vector<T> &v){ sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr ll safe_mod(ll x, ll m) { x %= m; if (x < 0) x += m; return x; } constexpr ll pow_mod_constexpr(ll x, ll n, int m) { if (m == 1) return 0; uint _m = (uint)(m); ull r = 1; ull y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; ll d = n - 1; while (d % 2 == 0) d /= 2; constexpr ll bases[3] = {2, 7, 61}; for (ll a : bases) { ll t = d; ll y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (ll)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { uint _m; ull im; explicit barrett(uint m) : _m(m), im((ull)(-1) / m + 1) {} uint umod() const { return _m; } uint mul(uint a, uint b) const { ull z = a; z *= b; ull x = ull((__uint128_t(z) * im) >> 64); uint v = (uint)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<signed_integral T> constexpr static_modint(T v){ ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)(x); } template<unsigned_integral T> constexpr static_modint(T v){ _v = (uint)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { ull z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(ll n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<signed_integral T> dynamic_modint(T v){ ll x = (ll)(v % (ll)(mod())); if (x < 0) x += mod(); _v = (uint)(x); } template<unsigned_integral T> dynamic_modint(T v){ _v = (uint)(v % mod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 4 "c.cpp" using mint = modint998244353; #line 2 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" namespace noya2 { template<typename mint> struct binomial { binomial(int len = 300000){ extend(len); } static mint fact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _fact[n]; } static mint ifact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _ifact[n]; } static mint inv(int n){ return ifact(n) * fact(n-1); } static mint C(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(r) * ifact(n-r); } static mint P(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(n-r); } inline mint operator()(int n, int r) { return C(n, r); } template<class... Cnts> static mint M(const Cnts&... cnts){ return multinomial(0,1,cnts...); } private: static mint multinomial(const int& sum, const mint& div_prod){ if (sum < 0) return 0; return fact(sum) * div_prod; } template<class... Tail> static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){ if (n1 < 0) return 0; return multinomial(sum+n1,div_prod*ifact(n1),tail...); } static vector<mint> _fact, _ifact; static void extend(int len = -1){ if (_fact.empty()){ _fact = _ifact = {1,1}; } int siz = _fact.size(); if (len == -1) len = siz * 2; len = min<int>(len, mint::mod()-1); if (len < siz) return ; _fact.resize(len+1), _ifact.resize(len+1); for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i; _ifact[len] = _fact[len].inv(); for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i; } }; template<typename T> std::vector<T>binomial<T>::_fact = vector<T>(2,T(1)); template<typename T> std::vector<T>binomial<T>::_ifact = vector<T>(2,T(1)); } // namespace noya2 #line 6 "c.cpp" binomial<mint> bnm; /* // given : y(x=0) , y(x=1) , ... , y(k) // return : y(x) template <typename mint> mint lagrange_interpolation(const vector<mint>& y, long long x, Binomial<mint>& C) { int N = (int)y.size() - 1; if (x <= N) return y[x]; mint ret = 0; vector<mint> dp(N + 1, 1), pd(N + 1, 1); mint a = x, one = 1; for (int i = 0; i < N; i++) dp[i + 1] = dp[i] * a, a -= one; for (int i = N; i > 0; i--) pd[i - 1] = pd[i] * a, a += one; for (int i = 0; i <= N; i++) { mint tmp = y[i] * dp[i] * pd[i] * C.finv(i) * C.finv(N - i); ret += ((N - i) & 1) ? -tmp : tmp; } return ret; } */ mint lagrange_interpolation(const vector<mint> &y, mint x){ if (x.val() < y.size()){ return y[x.val()]; } int n = y.size() - 1; vector<mint> lui(n+1,1), rui(n+1,1); mint a = x; rep(i,n){ lui[i+1] = lui[i] * a; a -= 1; } reb(i,n){ rui[i] = rui[i+1] * a; a += 1; } mint ans = 0; rep(i,n+1){ mint tmp = y[i] * lui[i] * rui[i] * bnm.ifact(i) * bnm.ifact(n-i); ans += ((n-i) & 1) ? -tmp : tmp; } return ans; } // sum[0 <= i <= n] i^k mint powsum(ll n, int k){ vector<mint> y(k+2,0); rep(i,k+1){ y[i+1] = y[i] + mint(i+1).pow(k); } return lagrange_interpolation(y,n); } const std::vector<int> fact_par1e7_mod998 = { 1 , 295201906 , 160030060 , 957629942 , 545208507 , 213689172 , 760025067 , 939830261 , 506268060 , 39806322 , 808258749 , 440133909 , 686156489 , 741797144 , 390377694 , 12629586 , 544711799 , 104121967 , 495867250 , 421290700 , 117153405 , 57084755 , 202713771 , 675932866 , 79781699 , 956276337 , 652678397 , 35212756 , 655645460 , 468129309 , 761699708 , 533047427 , 287671032 , 206068022 , 50865043 , 144980423 , 111276893 , 259415897 , 444094191 , 593907889 , 573994984 , 892454686 , 566073550 , 128761001 , 888483202 , 251718753 , 548033568 , 428105027 , 742756734 , 546182474 , 62402409 , 102052166 , 826426395 , 159186619 , 926316039 , 176055335 , 51568171 , 414163604 , 604947226 , 681666415 , 511621808 , 924112080 , 265769800 , 955559118 , 763148293 , 472709375 , 19536133 , 860830935 , 290471030 , 851685235 , 242726978 , 169855231 , 612759169 , 599797734 , 961628039 , 953297493 , 62806842 , 37844313 , 909741023 , 689361523 , 887890124 , 380694152 , 669317759 , 367270918 , 806951470 , 843736533 , 377403437 , 945260111 , 786127243 , 80918046 , 875880304 , 364983542 , 623250998 , 598764068 , 804930040 , 24257676 , 214821357 , 791011898 , 954947696 , 183092975 , }; const long long factpar = 10000000; long long fact998(long long n){ if (n >= mod998) return 0; long long res = fact_par1e7_mod998[n/factpar]; for (ll nn = n/factpar*factpar+1; nn <= n; nn++){ res = (res * nn) % mod998; } return res; } void solve(){ int n, k; in(n,k); mint ans = n*powsum(n-1,k) - powsum(n-1,k+1); ans *= 2*fact998(n-1); out(ans); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }