結果

問題 No.2747 Permutation Adjacent Sum
ユーザー ecotteaecottea
提出日時 2024-04-21 15:16:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 169 ms / 3,000 ms
コード長 25,273 bytes
コンパイル時間 4,619 ms
コンパイル使用メモリ 273,848 KB
実行使用メモリ 26,624 KB
最終ジャッジ日時 2024-10-13 14:05:49
合計ジャッジ時間 9,196 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 90 ms
11,904 KB
testcase_01 AC 48 ms
5,248 KB
testcase_02 AC 59 ms
8,832 KB
testcase_03 AC 30 ms
5,248 KB
testcase_04 AC 91 ms
12,800 KB
testcase_05 AC 150 ms
26,496 KB
testcase_06 AC 105 ms
13,568 KB
testcase_07 AC 92 ms
11,648 KB
testcase_08 AC 90 ms
17,664 KB
testcase_09 AC 169 ms
23,296 KB
testcase_10 AC 44 ms
5,504 KB
testcase_11 AC 72 ms
11,776 KB
testcase_12 AC 29 ms
5,248 KB
testcase_13 AC 40 ms
7,040 KB
testcase_14 AC 112 ms
16,000 KB
testcase_15 AC 131 ms
22,912 KB
testcase_16 AC 80 ms
12,160 KB
testcase_17 AC 128 ms
21,248 KB
testcase_18 AC 119 ms
20,608 KB
testcase_19 AC 13 ms
5,248 KB
testcase_20 AC 100 ms
12,800 KB
testcase_21 AC 127 ms
17,664 KB
testcase_22 AC 131 ms
18,816 KB
testcase_23 AC 55 ms
10,240 KB
testcase_24 AC 91 ms
10,880 KB
testcase_25 AC 70 ms
8,320 KB
testcase_26 AC 107 ms
16,384 KB
testcase_27 AC 101 ms
18,176 KB
testcase_28 AC 88 ms
17,152 KB
testcase_29 AC 64 ms
12,800 KB
testcase_30 AC 142 ms
26,624 KB
testcase_31 AC 140 ms
26,624 KB
testcase_32 AC 141 ms
26,496 KB
testcase_33 AC 141 ms
26,624 KB
testcase_34 AC 143 ms
26,624 KB
testcase_35 AC 2 ms
5,248 KB
testcase_36 AC 2 ms
5,248 KB
testcase_37 AC 2 ms
5,248 KB
testcase_38 AC 2 ms
5,248 KB
testcase_39 AC 2 ms
5,248 KB
testcase_40 AC 2 ms
5,248 KB
testcase_41 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#endif


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n |g|)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n |g|)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
*	単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
*	最高次の係数として c を追加する.
*/
struct MFPS {
	using SMFPS = vector<pim>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(mint c0) : n(1), c({ c0 }) {}
	MFPS(int c0) : n(1), c({ mint(c0) }) {}
	MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	void push_back(mint cn) { c.emplace_back(cn); ++n; }
	void pop_back() { c.pop_back(); --n; }
	[[nodiscard]] mint back() { return c.back(); }

	// 比較
	[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
	[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	inline mint const& operator[](int i) const { return c[i]; }
	inline mint& operator[](int i) { return c[i]; }

	// 次数
	[[nodiscard]] int deg() const { return n - 1; }
	[[nodiscard]] int size() const { return n; }

	static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
		// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci

		CONV = CONV_;
	}

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	[[nodiscard]] MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod z^d を求めることは,
		//		f g = 1 (mod z^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod z^1)
		// である.
		//
		// 次に,
		//		g = h (mod z^k)
		// が求まっているとして
		//		g mod z^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod z^k)
		//		⇒ (g - h)^2 = 0 (mod z^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より)
		//		⇔ g = (2 - f h) h (mod z^(2 k))
		// を得る.
		//
		// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		assert(!c.empty());
		assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k <<= 1) {
			int len = max(min(2 * k, d), 1);
			MFPS tmp(0, len);
			rep(i, min(len, n)) tmp[i] = -c[i];	// -f
			tmp *= g;							// -f h
			tmp.resize(len);
			tmp[0] += 2;						// 2 - f h
			g *= tmp;							// (2 - f h) h
			g.resize(len);
		}

		return g;
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	[[nodiscard]] MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
		// 従って q の次数は n-m,r の次数は m-2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n-m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}
	[[nodiscard]] MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize();
	}
	[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize();
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
		MFPS mono(0, d + 1);
		mono[d] = coef;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	[[nodiscard]] mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i] << "z^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
*	N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint bin_inv(int n, int r) : O(1)
*	二項係数の逆数 1/nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*
* mint hom(int n, int r) : O(1)
*	重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
*
* mint neg_bin(int n, int r) : O(1)
*	負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod

		assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 二項係数の逆数 1/nCr を返す.
	mint bin_inv(int n, int r) const {
		// verify : https://www.codechef.com/problems/RANDCOLORING

		assert(n <= n_max);
		assert(r >= 0 || n - r >= 0);
		return fac_inv[n] * fac[r] * fac[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}

	// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
	mint hom(int n, int r) {
		// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2

		if (n == 0) return (int)(r == 0);
		assert(n + r - 1 <= n_max);
		if (r < 0 || n - 1 < 0) return 0;
		return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];
	}

	// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)
	mint neg_bin(int n, int r) {
		// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g

		if (n == 0) return (int)(r == 0);
		assert(-n + r - 1 <= n_max);
		if (r < 0 || -n - 1 < 0) return 0;
		return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];
	}
};


//【ラグランジュ補間(一点評価)】O(n)
/*
* 各 i∈[0..n) について f(a i + b) = y[i] を満たす n-1 次多項式 f についての f(c) を返す.
*
* 制約:fm は n! まで計算可能
*/
mint lagrange_interpolation(int a, int b, const vm& y, mint c, const Factorial_mint& fm) {
	// 参考 : https://37zigen.com/lagrange-interpolation/
	// verify : https://atcoder.jp/contests/arc033/tasks/arc033_4

	//【方法】
	// ラグランジュ基底関数を
	//		f_i(x) = Πj≠i (x - x[j])/(x[i] - x[j]) (x[i] = a i + b)
	// と定めると,
	//		f(c) = Σi=[0..n) y[i] f_i(c)
	// と表される.
	//
	// 基底関数 f_i(x) の評価値 f_i(c) の分子については,左右からの累積積
	//		acc_l[i] = (c - x[0])(c - x[1]) ... (c - x[i - 1])
	//		acc_r[i] = (c - x[i + 1]) ... (c - x[n - 2])(c - x[n - 1])
	// を前計算しておけば計算できる.
	//
	// 分母については x[i] = a i + b であったことを思い出すと
	//		x[i] - x[j] = (a i + b) - (a j + b) = a (i - j)
	// となるので,
	//		Πj≠i a (i - j) = a^(n-1) (-1)^(n-1-i) i! (n-1-i)!
	// と計算できる.

	int n = sz(y);

	// acc_l[i] = (c - x[0])(c - x[1]) ... (c - x[i - 1])
	vm acc_l(n);
	acc_l[0] = 1;
	repi(i, 1, n - 1) acc_l[i] = acc_l[i - 1] * (c - (mint(a) * (i - 1) - b));

	// acc_r[i] = (c - x[i + 1]) ... (c - x[n - 2])(c - x[n - 1])
	vm acc_r(n);
	acc_r[n - 1] = 1;
	repir(i, n - 2, 0) acc_r[i] = (c - (mint(a) * (i + 1) - b)) * acc_r[i + 1];

	// ラグランジュ基底の線形結合を計算する.
	mint res = 0;
	rep(i, n) {
		res += y[i] * acc_l[i] * acc_r[i] * ((n - 1 - i) & 1 ? -1 : 1)
			* fm.fact_inv(i) * fm.fact_inv(n - 1 - i);
	}
	return res * mint(a).pow(n - 1);
}


//【階乗などの埋め込み】
/*
* 階乗とその逆数を埋め込み,任意の n に対し n!, 1/n! を O(WIDTH) で得られるようにする.
* AtCoder の提出コードは 512KB が上限なので,WIDTH ≧ 4*10^4 あたりが限界.
*/
const int WIDTH = (int)1e7; int MOD = mint::mod();
void embed_factorial() {
	// verify : https://judge.yosupo.jp/problem/many_factorials

	mint fac = 1;
	vm res;
	rep(i, MOD) {
		if (i % WIDTH == 0) res.emplace_back(fac);
		if (i < MOD - 1) fac *= i + 1;
	}

	mint fac_inv = fac.inv();
	vm res_inv;
	rep(i, MOD) {
		if (i % WIDTH == 0) res_inv.emplace_back(fac_inv);
		fac_inv *= MOD - 1 - i;
	}

	cout << "vi FACT={";
	rep(i, sz(res)) cout << res[i] << (i < sz(res) - 1 ? "," : "};\n");

	//cout << "vi FACT_INV={";
	//rep(i, sz(res_inv)) cout << res_inv[i] << (i < sz(res_inv) - 1 ? "," : "};\n");

	exit(0);

	/* 埋め込んだテーブルを元に階乗やその逆数の値を計算する.
	mint fac(ll n) {
		if (n >= MOD) return 0;
		ll q = n / WIDTH;
		mint res = FACT[q];
		repi(i, q * WIDTH + 1, n) res *= i;
		return res;
	}

	mint fac_inv(ll n) {
		assert(n < MOD);
		ll q = (MOD - 1 - n) / WIDTH;
		mint res = FACT_INV[q];
		repi(i, q * WIDTH + 1, MOD - 1 - n) res *= MOD - i;
		return res;
	}
	*/
}
vi FACT={1,295201906,160030060,957629942,545208507,213689172,760025067,939830261,506268060,39806322,808258749,440133909,686156489,741797144,390377694,12629586,544711799,104121967,495867250,421290700,117153405,57084755,202713771,675932866,79781699,956276337,652678397,35212756,655645460,468129309,761699708,533047427,287671032,206068022,50865043,144980423,111276893,259415897,444094191,593907889,573994984,892454686,566073550,128761001,888483202,251718753,548033568,428105027,742756734,546182474,62402409,102052166,826426395,159186619,926316039,176055335,51568171,414163604,604947226,681666415,511621808,924112080,265769800,955559118,763148293,472709375,19536133,860830935,290471030,851685235,242726978,169855231,612759169,599797734,961628039,953297493,62806842,37844313,909741023,689361523,887890124,380694152,669317759,367270918,806951470,843736533,377403437,945260111,786127243,80918046,875880304,364983542,623250998,598764068,804930040,24257676,214821357,791011898,954947696,183092975};
//vi FACT_INV = { };


mint fac(ll n) {
	if (n >= MOD) return 0;
	ll q = n / WIDTH;
	mint res = FACT[q];
	repi(i, q * WIDTH + 1, n) res *= i;
	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

//	embed_factorial();

	ll n; int k;
	cin >> n >> k;

	Factorial_mint fm(k + 100);

	mint fact_n = fac(n - 1);

	vm val(k + 10);
	repi(i, 0, k + 9) val[i] = mint(i).pow(k) * (n - i) * 2 * fact_n;
	dump(val);

	vm acc(k + 11);
	rep(i, k + 10) acc[i + 1] = acc[i] + val[i];
	dump(acc);

	auto res = lagrange_interpolation(1, 0, acc, n, fm);

	cout << res << endl;
}
0