結果
問題 |
No.318 学学学学学
|
ユーザー |
|
提出日時 | 2024-04-22 17:59:53 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 233 ms / 2,000 ms |
コード長 | 3,927 bytes |
コンパイル時間 | 4,193 ms |
コンパイル使用メモリ | 278,548 KB |
実行使用メモリ | 16,896 KB |
最終ジャッジ日時 | 2024-10-14 17:10:28 |
合計ジャッジ時間 | 8,173 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 |
ソースコード
#pragma GCC optimize("O3") #ifdef LOCAL #include "algo/debug_ver2.hpp" #else #define _debug(...) 42 #endif #include <bits/stdc++.h> using namespace std; template <typename T, typename U> struct LazySegmentTree { int n; vector<T> nodes; vector<U> lazy; vector<int> sizes; T ti; U ui; function<T(T, T)> op; function<T(T, U, int)> mapping; function<U(U, U)> composition; int bit_width(int x) { int ret = 0; while (x) x >>= 1, ++ret; return ret; } LazySegmentTree(int size, T ti, U ui, function<T(T, T)> op, function<T(T, U, int)> mapping, function<U(U, U)> composition) : ti(ti), ui(ui), op(op), mapping(mapping), composition(composition) { n = 1; while (n < size) n *= 2; nodes.resize(n * 2, ti); lazy.resize(n * 2, ui); sizes.resize(n * 2); for (int i = 0; i < size; ++i) sizes[n + i] = 1; for (int i = n - 1; i > 0; --i) sizes[i] = sizes[i * 2] + sizes[i * 2 + 1]; } LazySegmentTree(vector<T> vec, T ti, U ui, function<T(T, T)> op, function<T(T, U, int)> mapping, function<U(U, U)> composition) : LazySegmentTree(vec.size(), ti, ui, op, mapping, composition) { build(vec); } void build(vector<T> vec) { for (int i = 0; i < n; ++i) nodes[n + i] = vec[i]; for (int i = n - 1; i > 0; --i) update(i); } void set(int k, T x) { k += n; for (int i = bit_width((unsigned int)n) - 1; i > 0; --i) propagate(k >> i); nodes[k] = x; for (int i = 1; i < bit_width((unsigned int)n); ++i) update(k >> i); } T get(int k) { k += n; for (int i = bit_width((unsigned int)n) - 1; i > 0; --i) propagate(k >> i); return nodes[k]; } T prod(int l, int r) { l += n, r += n; for (int i = bit_width((unsigned int)n) - 1; i > 0; --i) { if (((l >> i) << i) != l) propagate(l >> i); if (((r >> i) << i) != r) propagate((r - 1) >> i); } T l_cum = ti, r_cum = ti; for (; l < r; l /= 2, r /= 2) { if (l % 2 == 1) l_cum = op(l_cum, nodes[l++]); if (r % 2 == 1) r_cum = op(r_cum, nodes[--r]); } return op(l_cum, r_cum); } T all_prod() { return nodes[1]; } void apply(int k, U x) { k += n; for (int i = bit_width((unsigned int)n) - 1; i > 0; --i) propagate(k >> i); nodes[k] = mapping(nodes[k], x, sizes[k]); for (int i = 1; i < bit_width((unsigned int)n); ++i) update(k >> i); } void apply(int l, int r, U x) { l += n, r += n; for (int i = bit_width((unsigned int)n) - 1; i > 0; --i) { if (((l >> i) << i) != l) propagate(l >> i); if (((r >> i) << i) != r) propagate((r - 1) >> i); } for (int l2 = l, r2 = r; l2 < r2; l2 /= 2, r2 /= 2) { if (l2 % 2 == 1) all_apply(l2++, x); if (r2 % 2 == 1) all_apply(--r2, x); } for (int i = 1; i < bit_width((unsigned int)n); ++i) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } private: void update(int x) { nodes[x] = op(nodes[x * 2], nodes[x * 2 + 1]); } void all_apply(int i, U x) { nodes[i] = mapping(nodes[i], x, sizes[i]); if (i < n) lazy[i] = composition(lazy[i], x); } void propagate(int i) { all_apply(i * 2, lazy[i]); all_apply(i * 2 + 1, lazy[i]); lazy[i] = ui; } }; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) cin >> a[i]; map<long long, pair<int, int>> pos; for (int i = 0; i < n; ++i) { if (pos.contains(a[i])) pos[a[i]] = {min(pos[a[i]].first, i), max(pos[a[i]].second, i + 1)}; else pos[a[i]] = {i, i + 1}; } LazySegmentTree<long long, long long> lsgt(a, 0, INT_MIN, plus(), [](long long x, long long y, int len) { return y == INT_MIN ? x : y * len; }, [](long long x, long long y) { return y == INT_MIN ? x : y; } ); for (map<long long, pair<int, int>>::iterator it = pos.begin(); it != pos.end(); ++it) lsgt.apply(it -> second.first, it -> second.second, it -> first); for (int i = 0; i < n; ++i) cout << (i == 0 ? "" : " ") << lsgt.get(i); cout << '\n'; }