結果
問題 | No.2742 Car Flow |
ユーザー | 👑 p-adic |
提出日時 | 2024-04-23 09:37:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 39,711 bytes |
コンパイル時間 | 2,699 ms |
コンパイル使用メモリ | 232,632 KB |
実行使用メモリ | 10,772 KB |
最終ジャッジ日時 | 2024-10-15 09:31:50 |
合計ジャッジ時間 | 4,750 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 20 ms
9,472 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 8 ms
5,248 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 10 ms
5,632 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | AC | 2 ms
5,248 KB |
testcase_41 | AC | 2 ms
5,248 KB |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | AC | 2 ms
5,248 KB |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
ソースコード
#ifndef INCLUDE_MODE#define INCLUDE_MODE// #define REACTIVE// #define USE_GETLINE#endif#ifdef INCLUDE_MAININ VO Solve(){// 数・配列・文字列CIN( ll , N );CIN_A( ll , N , A );// CIN( string , S , T );A.resize( N * 3 );MP sum = 0;FOR( i , 0 , N ){sum += A[i+N] = A[i];}FOR( i , 0 , N ){A[i+N*2] = A[i];}int i = N;while( i > 0 && A[i-1] ){i--;}while( i < N + N && !A[i] ){i++;}if( i == 0 || i == N + N ){RETURN( 0 );}int temp = N;int l = i , r = i , t = i + N , wait = 0;ll b = A[i];while( i + 1 < t ){if( b == A[i+1] ){i++;} else {if( b ){temp += Max<ll>( wait += ( i - r ) - ( r - l ) , 0 );wait = Min<ll>( wait , 0 );l = ++i;} else {r = ++i;}b = 1 - b;}}RETURN( sum / temp );// // グラフ// CIN( int , N , M );// // CIN( int , N ); int M = N - 1;// vector<vector<int>> e( N );// // UnionFindForest uff{ N };// FOR( j , 0 , M ){// CIN( int , uj , vj ); uj--; vj--;// e[uj].push_back( vj ); e[vj].push_back( uj );// // uff.Graft( uj , vj );// }// Graph graph{ N , Get( e ) };// // auto [ts,ts_inv,prev,dir_edge] = TopologicalSortedTree( graph , 0 );// // Graph graph_dir{ N , Get( dir_edge ) };// // Graph graph_dir_rev{ N , [&]( const int& i ){ return vector( prev[i] >= 0 ? 1 : 0 , prev[i] ); } };// BreadthFirstSearch bfs{ graph , -1 , 0 }; vector<int> d = dijk.GetDistance( 0 );// // DepthFirstSearchOnTree dfst{ graph , 0 };// // 重み付きグラフ// CIN( int , N , M );// // CIN( int , N ); int M = N - 1;// vector<vector<path>> e( N );// // vector d( N , vector<ll>( N , 1e18 ) ); FOR( i , 0 , N ){ d[i][i] = 0; }// // UnionFindForest uff{ N };// FOR( j , 0 , M ){// CIN( ll , uj , vj , wj ); uj--; vj--;// e[uj].push_back( { vj , wj } ); e[vj].push_back( { uj , wj } );// // d[uj][vj] = d[vj][uj] = wj;// // uff.Graft( uj , vj , wj );// }// auto edge = [&]( const int& i ){// vector<path> answer = e[i];// return answer;// };// Graph graph{ N , edge };// Dijkstra dijk{ graph }; vector<ll> d = dijk.GetDistance( 0 );// // vector<vector<ll>> weight; FloydWarshall( AdditiveTropicalSemirng( ll( 1e18 ) ) , d , weight );// 一般のクエリ// CIN( int , Q );// // BIT t{ N };// // IntervalMultiplyLazySqrtDecomposition t{ MultiplicativeMonoid<ll>( 1 ) , Module<ll,ll>() , N };// // vector<T3<int>> query( Q );// FOR( q , 0 , Q ){// CIN( int , type );// // CIN( ll , x , y ); x--; y--;// // query[q] = { x , y , q };// if( type == 1 ){// CIN( ll , l , r , x ); l--; r--;// // query[q] = { type , i , x };// } else if( type == 2 ){// CIN( ll , l , r ); l--; r--;// // query[q] = { type , x , y };// COUT( t.IntervalSum( l , r ) );// }// }// // sort( query );// // Mo mo{ query };// // グリッド// // CEXPR( int , bound_H , 2e3 ); CEXPR( int , bound_W , bound_H );// // ST_AS( ll( bound_H ) * bound_W < ll( 1 ) << 31 );// // CEXPR( int , bound_HW , bound_H * bound_W );// // SET_ASSERT( H , 1 , bound_H ); SET_ASSERT( W , 1 , bound_W );// cin >> H >> W; H_minus = H - 1; W_minus = W - 1; HW = H * W;// FOR( i , 0 , H ){// SetWallStringOnGrid( i , wall_str );// // SetWallOnGrid( i , wall );// }// // {i,j}へデコード: EnumHW( v )// // {i,j}をコード: EnumHW_inv( { i , j } );// // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h );// // v->wの方向番号を取得: DirectionNumberOnGrid( v , w );// // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n );}REPEAT_MAIN(1);#else // INCLUDE_MAIN#ifdef INCLUDE_SUB// COMPAREに使用。圧縮時は削除する。ll Naive( ll N , ll M , ll K ){ll answer = N + M + K;return answer;}// COMPAREに使用。圧縮時は削除する。ll Answer( ll N , ll M , ll K ){// START_WATCH;ll answer = N + M + K;// // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。// CEXPR( double , TL , 2000.0 );// while( CHECK_WATCH( TL ) ){// }return answer;}// 圧縮時は中身だけ削除する。IN VO Experiment(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COUT( N , M , K , ":" , Naive( N , M , K ) );// }// }// // cout << Naive( N ) << ",\n"[N==bound];// }}// 圧縮時は中身だけ削除する。IN VO SmallTest(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COMPARE( N , M , K );// }// }// }}// 圧縮時は中身だけ削除する。IN VO RandomTest(){// CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );// CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M );// CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K );// COMPARE( N , M , N );}#define INCLUDE_MAIN#include __FILE__#else // INCLUDE_SUB#ifdef INCLUDE_LIBRARY/*AdicExhausiveSearch/BFS (11KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/AdicExhausiveSearch/compress.txtCommutativeDualSqrtDecomposition (6KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/compress.txtCoordinateCompress (3KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txtDFSOnTree (11KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txtDifferenceSequence (9KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/DifferenceSequence/compress.txtDivisor/Prime (4KB)c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txtIntervalAddBIT (9KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txtIntervalMaxBIT (9KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/compress.txtIntervalMultiplyLazySqrtDecomposition (18KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/compress.txtMinimumCostFlow/PotentialisedDijkstra/Dijkstra (16KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/Dijkstra/Potentialised/MinimumCostFlow/compress.txtPolynomial (21KB)c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txtTwoByOneMatrix/TwoByTwoMatrix (9KB)C:/Users/user/Documents/Programming/Mathematics/LinearAlgebra/TwoByOne/compress.txtUnionFind (3KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt*/// VVV 常設でないライブラリは以下に挿入する。// AAA 常設でないライブラリは以上に挿入する。#define INCLUDE_SUB#include __FILE__#else // INCLUDE_LIBRARY#ifndef DEBUG#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )// #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )#define SOLVE_ONLY#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL#define CERR_A( A , N )#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL#endif#ifdef REACTIVE#define ENDL endl#else#define ENDL "\n"#endif#ifdef USE_GETLINE#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )#else#define SET_LL( A ) cin >> A#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define SET_A( N , ... ) SOLVE_ONLY; VariadicResize( N , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A ,__VA_ARGS__ ); }#define CIN_A( LL , N , ... ) VE<LL> __VA_ARGS__; SET_A( N , __VA_ARGS__ );#endif#include <bits/stdc++.h>using namespace std;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE#define SET_A_ASSERT( N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); }#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )#define CIN_A_ASSERT( N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( N , A , MIN , MAX )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__, ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }// 圧縮用#define TE template#define TY typename#define US using#define ST static#define AS assert#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define LE length#define PW Power#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&#define VI virtual#define IS basic_istream<char,Traits>#define OS basic_ostream<char,Traits>#define ST_AS static_assert#define reMO_CO remove_const#define is_COructible_v is_constructible_v#define rBE rbegin#define reSZ resize// 型のエイリアス#define decldecay_t(VAR)decay_t<decltype(VAR)>TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));TE <TY T> US inner_t = TY T::type;US uint = unsigned int;US ll = long long;US ull = unsigned long long;US ld = long double;US lld = __float128;TE <TY INT> US T2 = pair<INT,INT>;TE <TY INT> US T3 = tuple<INT,INT,INT>;TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;US path = pair<int,ll>;// 算術用TE <TY T> CE T PositiveBaseModulo(T a,CO T& p){RE MO(a < 0?((((++a)*= -1)%= p)*= -1)+= p - 1:a < p?a:a %= p);}TE <TY T> CE T Modulo(T a,CO T& p){RE PositiveBaseModulo(MO(a),p < 0?-p:p);}TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseModulo(a,p))/ p;}TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);}// 二分探索用// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \{ \ll L_BS = MINIMUM; \ll U_BS = MAXIMUM; \ANSWER = UPDATE_ANSWER; \ll EXPRESSION_BS; \CO ll CO_TARGET_BS = ( CO_TARGET ); \ll DIFFERENCE_BS; \WH( L_BS < U_BS ){ \DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS ,DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \U_BS = UPDATE_U; \} else { \L_BS = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \if( L_BS > U_BS ){ \CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ANSWER = MAXIMUM + 1; \} else { \CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \EXPRESSION_BS = ( EXPRESSION ); \CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ), CO_TARGET_BS ); \if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \} else { \CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ANSWER = MAXIMUM + 1; \} \} \} \// 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER ,ANSWER + 1 , ( L_BS + U_BS ) / 2 )// 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 ,ANSWER , ( L_BS + 1 + U_BS ) / 2 )// 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 ,ANSWER , ( L_BS + 1 + U_BS ) / 2 )// 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER ,ANSWER + 1 , ( L_BS + U_BS ) / 2 )// 尺取り法用// VAR_TPA_LとVAR_TPA_RをINITで初期化し、VAR_TPA_RがCONTINUE_CONDITIONを満たす限り、// 閉区間[VAR_TPA_L,VAR_TPA_R]が条件ON_CONDITIONを満たすか否かを判定し、// trueになるかVAR_TAR_LがVAR_TAR_Rに追い付くまでVAR_TPA_Lの更新操作UPDATE_Lを繰り返し、// その後VAR_TPA_Rの更新操作UPDATE_Rを行う。// ON_CONDITIONがtrueとなる極大閉区間とその時点でのINFOをANSWERに格納する。#define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO ) \VE<tuple<decldecay_t( INIT ),decldecay_t( INIT ),decldecay_t( INFO )>> ANSWER{}; \{ \auto init_TPA = INIT; \decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO }; \auto ANSWER ## _prev = ANSWER ## _temp; \auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \bool on_TPA_prev = false; \WH( true ){ \bool continuing = CONTINUE_CONDITION; \bool on_TPA = continuing && ( ON_CONDITION ); \CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->", on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \if( on_TPA_prev && ! on_TPA ){ \ANSWER.push_back( ANSWER ## _prev ); \} \if( continuing ){ \if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ANSWER ## _prev = ANSWER ## _temp; \UPDATE_R; \} else { \UPDATE_L; \} \} else { \break; \} \on_TPA_prev = on_TPA; \} \} \// データ構造用#define DF_OF_POINTWISE_SUM(V)TE <TY T> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0 + *IT1);}RE AN;}DF_OF_POINTWISE_SUM(VE);DF_OF_POINTWISE_SUM(LI);DF_OF_POINTWISE_SUM(set);DF_OF_POINTWISE_SUM(unordered_set);TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};}TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;}TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;}TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;}TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;}TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;}TE <TY T> IN T Id(CO T& v){RE v;}TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;}TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;}// グラフ用TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};}TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}// グリッド問題用int H,W,H_minus,W_minus,HW;VE<string> wall_str;VE<VE<bool> > non_wall;char walkable = '.',unwalkable = '#';IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}CO string direction[4]={"U","R","D","L"};IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;}IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;}IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;}IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);}IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}}// VVV 常設ライブラリは以下に挿入する。#ifdef DEBUG#include "C:/Users/user/Documents/Programming/Contest/Template/include/a_Body.hpp"#else// StdStream(2KB)#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg) {auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT== BE?os:os << " ")<< *IT;IT++;}RE os;}TE <CL Traits,TY Arg1,TY Arg2> IN IS& OP>>(IS& is,pair<Arg1,Arg2>& arg){RE is >> arg.first >> arg.second;}TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> INIS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is>> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS&VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);TE <CL Traits,TY Arg1,TY Arg2> IN OS&OP<<(OS& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " " << arg.second;}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,CO Arg& arg){RE os<< arg;}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os <<arg1 << " ",arg2,args...);}// Vector(1KB)IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.reSZ(SZ);VariadicResize(SZ,args...);}// Random(1KB)ll GetRand(CRI Rand_min,CRI Rand_max){ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}// Sort(1KB)TE <TY T> VO sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}// Set (1KB)CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CECO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};TE <TY T,TE <TY...> TY MOD>struct hash<MOD<T>>{IN size_t OP()(CO MOD<T>& n)CO;};TE <TY T1,TY T2,TE <TY...> TY PAIR>struct hash<PAIR<T1,T2>>{IN size_t OP()(CO PAIR<T1,T2>& n)CO;};TE <TY T1,TY T2,TY T3>struct hash<tuple<T1,T2,T3>>{IN size_t OP()(CO tuple<T1,T2,T3>& n)CO;};TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;TE <TY T,TY U>USMap = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;TE <TY T,TE <TY...> TY MOD> IN size_t hash<MOD<T>>::OP()(CO MOD<T>& n)CO{ST CO hash<T> h;RE h(n.RP());}TE <TY T0,TY T1,TE <TY...> TY PAIR> IN size_thash<PAIR<T0,T1>>::OP()(CO PAIR<T0,T1>& n)CO{ST CO size_t seed = GetRand(1e3,1e8);ST CO hash<T0> h0;ST CO hash<T1> h1;RE(h0(get<0>(n))+ seed)^ h1(get<1>(n));}TE <TY T0,TY T1,TY T2> IN size_t hash<tuple<T0,T1,T2>>::OP()(CO tuple<T0,T1,T2>& n)CO{ST CO size_t seed = GetRand(1e3,1e8);ST COhash<pair<T0,T1>> h01;ST CO hash<T2> h2;RE(h01({get<0>(n),get<1>(n)})+ seed)^ h2(get<2>(n));}// Algebra (4KB)#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE#define DC_OF_POINT(POINT)IN U& POINT()NE#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PUVirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U =ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN UProduct(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);};TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 +=u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,COU& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PUVirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TYU = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TYM_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> INMultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,Ue_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PUVirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CLAbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}// Graph (5KB)TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E&edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PUEdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;INret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> INMemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>&& is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_invenum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TYEnum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN TMemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(COPATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRIMemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]=m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p));}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F>IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{REMemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TYR2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));}// ConstexprModulo (7KB)CEXPR(uint,P,998244353);#define RP Represent#define DeRP DerepresentTE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE COuint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -=n_uq;}TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M <g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;};#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M>OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE<TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>&FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>&PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;};US MP = Mod<P>;TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CEMod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n= MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy));RE*TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH*= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M>n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uintM> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COants::g_order_minus_1_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < COants::g_memory_LE);ST Mod<M> memory[COants::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}REmemory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}AS(n < COants::g_memory_LE);ST Mod<M> memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE<uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST Mod<M> memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i<= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M>IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}#endif// AAA 常設ライブラリは以上に挿入する。#define INCLUDE_LIBRARY#include __FILE__#endif // INCLUDE_LIBRARY#endif // INCLUDE_SUB#endif // INCLUDE_MAIN