結果

問題 No.2742 Car Flow
ユーザー 👑 p-adicp-adic
提出日時 2024-04-23 09:37:16
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 39,711 bytes
コンパイル時間 2,699 ms
コンパイル使用メモリ 232,632 KB
実行使用メモリ 10,772 KB
最終ジャッジ日時 2024-10-15 09:31:50
合計ジャッジ時間 4,750 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 20 ms
9,472 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 8 ms
5,248 KB
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 AC 10 ms
5,632 KB
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 AC 2 ms
5,248 KB
testcase_41 AC 2 ms
5,248 KB
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 AC 2 ms
5,248 KB
testcase_46 WA -
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN
IN VO Solve()
{
//
CIN( ll , N );
CIN_A( ll , N , A );
// CIN( string , S , T );
A.resize( N * 3 );
MP sum = 0;
FOR( i , 0 , N ){
sum += A[i+N] = A[i];
}
FOR( i , 0 , N ){
A[i+N*2] = A[i];
}
int i = N;
while( i > 0 && A[i-1] ){
i--;
}
while( i < N + N && !A[i] ){
i++;
}
if( i == 0 || i == N + N ){
RETURN( 0 );
}
int temp = N;
int l = i , r = i , t = i + N , wait = 0;
ll b = A[i];
while( i + 1 < t ){
if( b == A[i+1] ){
i++;
} else {
if( b ){
temp += Max<ll>( wait += ( i - r ) - ( r - l ) , 0 );
wait = Min<ll>( wait , 0 );
l = ++i;
} else {
r = ++i;
}
b = 1 - b;
}
}
RETURN( sum / temp );
// //
// CIN( int , N , M );
// // CIN( int , N ); int M = N - 1;
// vector<vector<int>> e( N );
// // UnionFindForest uff{ N };
// FOR( j , 0 , M ){
// CIN( int , uj , vj ); uj--; vj--;
// e[uj].push_back( vj ); e[vj].push_back( uj );
// // uff.Graft( uj , vj );
// }
// Graph graph{ N , Get( e ) };
// // auto [ts,ts_inv,prev,dir_edge] = TopologicalSortedTree( graph , 0 );
// // Graph graph_dir{ N , Get( dir_edge ) };
// // Graph graph_dir_rev{ N , [&]( const int& i ){ return vector( prev[i] >= 0 ? 1 : 0 , prev[i] ); } };
// BreadthFirstSearch bfs{ graph , -1 , 0 }; vector<int> d = dijk.GetDistance( 0 );
// // DepthFirstSearchOnTree dfst{ graph , 0 };
// //
// CIN( int , N , M );
// // CIN( int , N ); int M = N - 1;
// vector<vector<path>> e( N );
// // vector d( N , vector<ll>( N , 1e18 ) ); FOR( i , 0 , N ){ d[i][i] = 0; }
// // UnionFindForest uff{ N };
// FOR( j , 0 , M ){
// CIN( ll , uj , vj , wj ); uj--; vj--;
// e[uj].push_back( { vj , wj } ); e[vj].push_back( { uj , wj } );
// // d[uj][vj] = d[vj][uj] = wj;
// // uff.Graft( uj , vj , wj );
// }
// auto edge = [&]( const int& i ){
// vector<path> answer = e[i];
// return answer;
// };
// Graph graph{ N , edge };
// Dijkstra dijk{ graph }; vector<ll> d = dijk.GetDistance( 0 );
// // vector<vector<ll>> weight; FloydWarshall( AdditiveTropicalSemirng( ll( 1e18 ) ) , d , weight );
//
// CIN( int , Q );
// // BIT t{ N };
// // IntervalMultiplyLazySqrtDecomposition t{ MultiplicativeMonoid<ll>( 1 ) , Module<ll,ll>() , N };
// // vector<T3<int>> query( Q );
// FOR( q , 0 , Q ){
// CIN( int , type );
// // CIN( ll , x , y ); x--; y--;
// // query[q] = { x , y , q };
// if( type == 1 ){
// CIN( ll , l , r , x ); l--; r--;
// // query[q] = { type , i , x };
// } else if( type == 2 ){
// CIN( ll , l , r ); l--; r--;
// // query[q] = { type , x , y };
// COUT( t.IntervalSum( l , r ) );
// }
// }
// // sort( query );
// // Mo mo{ query };
// //
// // CEXPR( int , bound_H , 2e3 ); CEXPR( int , bound_W , bound_H );
// // ST_AS( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
// // CEXPR( int , bound_HW , bound_H * bound_W );
// // SET_ASSERT( H , 1 , bound_H ); SET_ASSERT( W , 1 , bound_W );
// cin >> H >> W; H_minus = H - 1; W_minus = W - 1; HW = H * W;
// FOR( i , 0 , H ){
// SetWallStringOnGrid( i , wall_str );
// // SetWallOnGrid( i , wall );
// }
// // {i,j}: EnumHW( v )
// // {i,j}: EnumHW_inv( { i , j } );
// // (i,j)->(k,h): DirectionNumberOnGrid( i , j , k , h );
// // v->w: DirectionNumberOnGrid( v , w );
// // U<->DR<->L: ReverseDirectionNumberOnGrid( n );
}
REPEAT_MAIN(1);
#else // INCLUDE_MAIN
#ifdef INCLUDE_SUB
// COMPARE使
ll Naive( ll N , ll M , ll K )
{
ll answer = N + M + K;
return answer;
}
// COMPARE使
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
//
IN VO Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
//
IN VO SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// }
}
//
IN VO RandomTest()
{
// CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );
// CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M );
// CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K );
// COMPARE( N , M , N );
}
#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_SUB
#ifdef INCLUDE_LIBRARY
/*
AdicExhausiveSearch/BFS (11KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/AdicExhausiveSearch/compress.txt
CommutativeDualSqrtDecomposition (6KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/compress.txt
CoordinateCompress (3KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt
DFSOnTree (11KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txt
DifferenceSequence (9KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/DifferenceSequence/compress.txt
Divisor/Prime (4KB)
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
IntervalAddBIT (9KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt
IntervalMaxBIT (9KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/compress.txt
IntervalMultiplyLazySqrtDecomposition (18KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/compress.txt
MinimumCostFlow/PotentialisedDijkstra/Dijkstra (16KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/Dijkstra/Potentialised/MinimumCostFlow/compress.txt
Polynomial (21KB)
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
TwoByOneMatrix/TwoByTwoMatrix (9KB)
C:/Users/user/Documents/Programming/Mathematics/LinearAlgebra/TwoByOne/compress.txt
UnionFind (3KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt
*/
// VVV
// AAA
#define INCLUDE_SUB
#include __FILE__
#else // INCLUDE_LIBRARY
#ifndef DEBUG
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
// #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){
      SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
#define ENDL endl
#else
#define ENDL "\n"
#endif
#ifdef USE_GETLINE
#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET_LL( A ) cin >> A
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define SET_A( N , ... ) SOLVE_ONLY; VariadicResize( N , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A ,
      __VA_ARGS__ ); }
#define CIN_A( LL , N , ... ) VE<LL> __VA_ARGS__; SET_A( N , __VA_ARGS__ );
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve
    (); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( N , A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__
    , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }
//
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
#define reSZ resize
//
#define decldecay_t(VAR)decay_t<decltype(VAR)>
TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;
//
TE <TY T> CE T PositiveBaseModulo(T a,CO T& p){RE MO(a < 0?((((++a)*= -1)%= p)*= -1)+= p - 1:a < p?a:a %= p);}
TE <TY T> CE T Modulo(T a,CO T& p){RE PositiveBaseModulo(MO(a),p < 0?-p:p);}
TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseModulo(a,p))/ p;}
TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);}
//
// EXPRESSIONANSWER調EXPRESSION >= CO_TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
{ \
ll L_BS = MINIMUM; \
ll U_BS = MAXIMUM; \
ANSWER = UPDATE_ANSWER; \
ll EXPRESSION_BS; \
CO ll CO_TARGET_BS = ( CO_TARGET ); \
ll DIFFERENCE_BS; \
WH( L_BS < U_BS ){ \
DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS ,
          DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \
if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \
U_BS = UPDATE_U; \
} else { \
L_BS = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( L_BS > U_BS ){ \
CERR( "" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
CERR( "" , #EXPRESSION , "" ); \
CERR( "" ); \
EXPRESSION_BS = ( EXPRESSION ); \
CERR( "" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" )
          , CO_TARGET_BS ); \
if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \
CERR( "" , #ANSWER , ":=" , ANSWER ); \
} else { \
CERR( "" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "調調調" ); \
ANSWER = MAXIMUM + 1; \
} \
} \
} \
// 調EXPRESSION >= CO_TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER ,
    ANSWER + 1 , ( L_BS + U_BS ) / 2 )
// 調EXPRESSION <= CO_TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 ,
    ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 調EXPRESSION >= CO_TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 ,
    ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 調EXPRESSION <= CO_TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER ,
    ANSWER + 1 , ( L_BS + U_BS ) / 2 )
//
// VAR_TPA_LVAR_TPA_RINITVAR_TPA_RCONTINUE_CONDITION
// [VAR_TPA_L,VAR_TPA_R]ON_CONDITION
// trueVAR_TAR_LVAR_TAR_RVAR_TPA_LUPDATE_L
// VAR_TPA_RUPDATE_R
// ON_CONDITIONtrueINFOANSWER
#define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO ) \
VE<tuple<decldecay_t( INIT ),decldecay_t( INIT ),decldecay_t( INFO )>> ANSWER{}; \
{ \
auto init_TPA = INIT; \
decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO }; \
auto ANSWER ## _prev = ANSWER ## _temp; \
auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \
auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \
auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \
bool on_TPA_prev = false; \
WH( true ){ \
bool continuing = CONTINUE_CONDITION; \
bool on_TPA = continuing && ( ON_CONDITION ); \
CERR( continuing ? "" : "" , " [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->"
          , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \
if( on_TPA_prev && ! on_TPA ){ \
ANSWER.push_back( ANSWER ## _prev ); \
} \
if( continuing ){ \
if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \
ANSWER ## _prev = ANSWER ## _temp; \
UPDATE_R; \
} else { \
UPDATE_L; \
} \
} else { \
break; \
} \
on_TPA_prev = on_TPA; \
} \
} \
//
#define DF_OF_POINTWISE_SUM(V)TE <TY T> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty
    ()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN
    .push_back(*IT0 + *IT1);}RE AN;}
DF_OF_POINTWISE_SUM(VE);
DF_OF_POINTWISE_SUM(LI);
DF_OF_POINTWISE_SUM(set);
DF_OF_POINTWISE_SUM(unordered_set);
TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};}
TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2
    >(t1)};}
TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2
    >(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};}
TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;}
TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;}
TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;}
TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;}
TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;}
TE <TY T> IN T Id(CO T& v){RE v;}
TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;}
TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;}
//
TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};}
TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}
//
int H,W,H_minus,W_minus,HW;
VE<string> wall_str;VE<VE<bool> > non_wall;
char walkable = '.',unwalkable = '#';
IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}
IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}
CO string direction[4]={"U","R","D","L"};
IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}
IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}
IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;}
IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1
    <H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1
    <W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;}
IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if
    (i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}
    ),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;}
IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);}
IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable
    ?false:(AS(S_i[j]==unwalkable),true);}}
// VVV
#ifdef DEBUG
#include "C:/Users/user/Documents/Programming/Contest/Template/include/a_Body.hpp"
#else
// StdStream2KB
#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg) {auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT
    == BE?os:os << " ")<< *IT;IT++;}RE os;}
TE <CL Traits,TY Arg1,TY Arg2> IN IS& OP>>(IS& is,pair<Arg1,Arg2>& arg){RE is >> arg.first >> arg.second;}TE <CL Traits> IN IS& VariadicCin(IS& is
    ){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN
    IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is
    >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS&
    VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args
    ...);}DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);TE <CL Traits,TY Arg1,TY Arg2> IN OS&
    OP<<(OS& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " " << arg.second;}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,CO Arg& arg){RE os
    << arg;}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os <<
    arg1 << " ",arg2,args...);}
// Vector1KB
IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.reSZ(SZ);VariadicResize(SZ,args...);}
// Random1KB
ll GetRand(CRI Rand_min,CRI Rand_max){ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}
// Sort1KB
TE <TY T> VO sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp
    );}else{sort(a.BE(),a.EN());}}
// Set (1KB)
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE
    CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};TE <TY T,TE <TY...> TY MOD>struct hash<MOD<T>>{IN size_t OP()(CO MOD<T>& n
    )CO;};TE <TY T1,TY T2,TE <TY...> TY PAIR>struct hash<PAIR<T1,T2>>{IN size_t OP()(CO PAIR<T1,T2>& n)CO;};TE <TY T1,TY T2,TY T3>struct hash<tuple
    <T1,T2,T3>>{IN size_t OP()(CO tuple<T1,T2,T3>& n)CO;};
TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;TE <TY T,TY U>US
    Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
TE <TY T,TE <TY...> TY MOD> IN size_t hash<MOD<T>>::OP()(CO MOD<T>& n)CO{ST CO hash<T> h;RE h(n.RP());}TE <TY T0,TY T1,TE <TY...> TY PAIR> IN size_t
    hash<PAIR<T0,T1>>::OP()(CO PAIR<T0,T1>& n)CO{ST CO size_t seed = GetRand(1e3,1e8);ST CO hash<T0> h0;ST CO hash<T1> h1;RE(h0(get<0>(n))+ seed)^ h1
    (get<1>(n));}TE <TY T0,TY T1,TY T2> IN size_t hash<tuple<T0,T1,T2>>::OP()(CO tuple<T0,T1,T2>& n)CO{ST CO size_t seed = GetRand(1e3,1e8);ST CO
    hash<pair<T0,T1>> h01;ST CO hash<T2> h2;RE(h01({get<0>(n),get<1>(n)})+ seed)^ h2(get<2>(n));}
// Algebra (4KB)
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0
    ;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU
    VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U
    >{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U
    );IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U =
    ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U
    Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1
    );};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U
    >::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U
    ,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U
    >::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U
    >::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 +=
    u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO
    U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PU
    VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY
    U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY
    M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> IN
    MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U
    e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU
    VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL
    AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U
    ,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U
    )){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}
// Graph (5KB)
TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2
    Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge
    (CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1
    ,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E&
    edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i
    );TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU
    EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T
    ,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN
    ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv
    ,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T
    ,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN
    MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph
    <decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back
    ())),E>;
TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>
    && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge
    )){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv
    enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv
    )){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory
    (),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY
    Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T
    MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E
    >::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO
    PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>
    IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI
    MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]=
    m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset
    (){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T
    ,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E
    >::Edge(CO T& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p
    ));}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F>
    IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F
    >(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE
    MemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TY
    R2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));}
// ConstexprModulo (7KB)
CEXPR(uint,P,998244353);
#define RP Represent
#define DeRP Derepresent
TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO
    uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -=
    n_uq;}
TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M <
    g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}
    ;
#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;
#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}
#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M>
    OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP
    +=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n
    );TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD
    (==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE
    );DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE
    <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap
    (Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>&
    FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>&
    PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;};
US MP = Mod<P>;
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n
    )){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP
    =(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CE
    Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n
    = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy));RE
    *TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH
    *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=
    1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M>
    n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int
    )NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD
    (<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n
    .Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP
    <<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod
    <M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uint
    M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants
    ::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW
    (INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M
    >::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0
    ;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COants::g_order_minus_1_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n
    )NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < COants::g_memory_LE);ST Mod<M> memory[COants::g_memory_LE]
    ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE
    memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}AS(n < COants::g_memory_LE);ST Mod<M> memory[COants
    ::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE
    <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST Mod<M> memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){
    (memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i
    <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M
    >::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M>
    IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT
    > CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string
    (CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char
    ,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod
    <M>& n){RE os << n.RP();}
#endif
// AAA
#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_SUB
#endif // INCLUDE_MAIN
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0