結果
| 問題 | No.502 階乗を計算するだけ |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-04-23 15:41:30 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,930 bytes |
| 記録 | |
| コンパイル時間 | 3,129 ms |
| コンパイル使用メモリ | 254,212 KB |
| 実行使用メモリ | 53,188 KB |
| 最終ジャッジ日時 | 2024-10-15 16:07:47 |
| 合計ジャッジ時間 | 9,436 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 42 WA * 10 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
using ld = long double;
using P = pair<ll, ll>;
using Pld = pair<ld, ld>;
using Vec = vector<ll>;
using VecP = vector<P>;
using VecB = vector<bool>;
using VecC = vector<char>;
using VecD = vector<ld>;
using VecS = vector<string>;
template <class T>
using Vec2 = vector<vector<T>>;
#define REP(i, m, n) for(ll i = (m); i < (n); ++i)
#define REPN(i, m, n) for(ll i = (m); i <= (n); ++i)
#define REPR(i, m, n) for(ll i = (m)-1; i >= (n); --i)
#define REPNR(i, m, n) for(ll i = (m); i >= (n); --i)
#define rep(i, n) REP(i, 0, n)
#define repn(i, n) REPN(i, 1, n)
#define repr(i, n) REPR(i, n, 0)
#define repnr(i, n) REPNR(i, n, 1)
#define all(s) (s).begin(), (s).end()
template <class T1, class T2>
bool chmax(T1 &a, const T2 b) { if (a < b) { a = b; return true; } return false; }
template <class T1, class T2>
bool chmin(T1 &a, const T2 b) { if (a > b) { a = b; return true; } return false; }
template <class T>
istream &operator>>(istream &is, vector<T> &v) { for (T &i : v) is >> i; return is; }
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) { for (const T &i : v) os << i << ' '; return os; }
void co() { cout << '\n'; }
template <class Head, class... Tail>
void co(Head&& head, Tail&&... tail) { cout << head << ' '; co(forward<Tail>(tail)...); }
void ce() { cerr << '\n'; }
template <class Head, class... Tail>
void ce(Head&& head, Tail&&... tail) { cerr << head << ' '; ce(forward<Tail>(tail)...); }
void sonic() { ios::sync_with_stdio(false); cin.tie(nullptr); }
void setp(const int n) { cout << fixed << setprecision(n); }
constexpr int64_t LINF = 1000000000000000001;
constexpr int64_t MOD = 1000000007;
constexpr int64_t MOD_N = 998244353;
constexpr long double EPS = 1e-11;
const double PI = acos(-1);
template <int mod>
struct ModInt {
int64_t x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &rhs) {
if((x += rhs.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &rhs) {
if((x += mod - rhs.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &rhs) {
x = (int) (1LL * x * rhs.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &rhs) {
*this *= rhs.inverse();
return *this;
}
ModInt &operator++() {
if((++x) >= mod) x -= mod;
return *this;
}
ModInt operator++(int) {
ModInt tmp(*this);
operator++();
return tmp;
}
ModInt &operator--() {
if((x += mod - 1) >= mod) x -= mod;
return *this;
}
ModInt operator--(int) {
ModInt tmp(*this);
operator--();
return tmp;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }
ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }
ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }
ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }
bool operator==(const ModInt &rhs) const { return x == rhs.x; }
bool operator!=(const ModInt &rhs) const { return x != rhs.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt res(1), mul(x);
while (n > 0) {
if(n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
void pow_self(int64_t n) {
ModInt tmp = pow(n);
swap(*this, tmp);
}
friend ostream &operator<<(ostream &os, const ModInt &rhs) {
return os << rhs.x;
}
friend istream &operator>>(istream &is, ModInt &rhs) {
int64_t t;
is >> t;
rhs = ModInt< mod >(t);
return (is);
}
int to_int() const { return x; }
static int get_mod() { return mod; }
};
using Mint = ModInt<MOD>;
struct prime_number {
vector<int64_t> data;
prime_number() {
init();
}
void init() {
constexpr int sz = 4194304;
bitset<sz> is_not_prime;
is_not_prime[0] = is_not_prime[1] = true;
for (int64_t i = 2; i < sz; ++i) {
if (!is_not_prime[i]) {
data.push_back(i);
for (int64_t j = 2; i * j < sz; ++j) {
is_not_prime[i * j] = true;
}
}
}
}
bool is_prime(int64_t n) {
if (n == 1) return false;
for (auto i : data) {
if (i * i > n) break;
if (n % i == 0) return false;
}
return true;
}
vector<pair<int64_t, int64_t>> prime_factorization(int64_t n) {
vector<pair<int64_t, int64_t>> res;
for (auto i : data) {
int64_t cnt = 0;
while (n % i == 0) {
n /= i;
cnt++;
}
if (cnt) res.push_back({i, cnt});
if (n < i * i) break;
}
if (n != 1) res.push_back({n, 1});
return res;
}
int64_t pow_int(int64_t x, int64_t n) {
int64_t res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
vector<int64_t> divisors(int64_t n) {
auto v = prime_factorization(n);
vector<int64_t> res, a, b, cp;
res.push_back(1);
for (auto p : v) {
cp.resize(res.size());
copy(res.begin(), res.end(), cp.begin());
a.resize(res.size());
for (int64_t k = 1; k <= p.second; ++k) {
int64_t t = pow_int(p.first, k);
for (int64_t i = 0; i < a.size(); ++i) a[i] = cp[i] * t;
merge(res.begin(), res.end(), a.begin(), a.end(), back_inserter(b));
swap(res, b);
b.clear();
}
}
return res;
}
};
prime_number pn;
template <int mod>
struct math_mod {
using mint = ModInt<mod>;
vector<mint> fac, finv;
math_mod() {
_init(3000000);
}
void _init(const int64_t n) {
if (fac.size() > n) return;
const int m = fac.size();
fac.resize(n + 1);
for (int64_t i = m; i <= n; ++i) {
if (i == 0) fac[i] = 1;
else fac[i] = fac[i - 1] * i;
}
finv.resize(n + 1);
finv[n] = fac[n].inverse();
for (int64_t i = n - 1; i >= m; --i) finv[i] = finv[i + 1] * (i + 1);
}
mint fact(int64_t x) {
assert(x >= 0 && x < fac.size());
return fac[x];
}
mint combi(int64_t n, int64_t k) {
if (n < k || n < 0 || k < 0) return 0;
_init(n);
return fac[n] * finv[k] * finv[n - k];
}
mint combi_naive(int64_t n, int64_t k) {
if (n - k < k) n = n - k;
if (n < k || n < 0 || k < 0) return 0;
mint res = 1;
for (int64_t i = 0; i < k; ++i) {
res *= n - i;
res /= i + 1;
}
return res;
}
mint permu(int64_t n, int64_t k) {
if (n < k || n < 0 || k < 0) return 0;
_init(n);
return fac[n] * finv[n - k];
}
mint factorial(int64_t n) {
if (n >= 10000007) return 0;
mint ans = 1;
for (auto p : pn.data) {
if (n < p) break;
int64_t c = 0, t = p;
while (t <= n) {
c += n / t;
t *= p;
}
ans *= mint(p).pow(c);
}
return ans;
}
};
math_mod<MOD> math;
int main(void) {
ll n;
cin >> n;
co(math.factorial(n));
return 0;
}