結果

問題 No.2733 Just K-times TSP
ユーザー umimelumimel
提出日時 2024-04-24 22:45:41
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 4,576 bytes
コンパイル時間 2,279 ms
コンパイル使用メモリ 190,248 KB
実行使用メモリ 218,368 KB
最終ジャッジ日時 2024-11-07 07:58:58
合計ジャッジ時間 7,919 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,496 KB
testcase_01 AC 3 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 3 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 4 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 3 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 7 ms
5,248 KB
testcase_15 AC 45 ms
7,424 KB
testcase_16 AC 4 ms
5,248 KB
testcase_17 AC 255 ms
23,168 KB
testcase_18 AC 471 ms
35,712 KB
testcase_19 AC 1,050 ms
54,784 KB
testcase_20 AC 3 ms
5,248 KB
testcase_21 AC 58 ms
9,856 KB
testcase_22 TLE -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i)
#define rep(i, n) drep(i, 0, n - 1)
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 1;


template<typename T>
struct edge{
    int from, to;
    T cost;
    int id;

    edge(){}
    edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
    edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){}
    edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}
};

template<typename T>
struct redge{
    int from, to;
    T cap, cost;
    int rev;
    
    redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
    redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};

template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;


template<long long mod>
class modint{
    long long x;
public:
    modint(long long x=0) : x((x%mod+mod)%mod) {}
    modint operator-() const { 
      return modint(-x);
    }
    bool operator==(const modint& a){
        if(x == a) return true;
        else return false;
    }
    bool operator==(long long a){
        if(x == a) return true;
        else return false;
    }
    bool operator!=(const modint& a){
        if(x != a) return true;
        else return false;
    }
    bool operator!=(long long a){
        if(x != a) return true;
        else return false;
    }
    modint& operator+=(const modint& a) {
        if ((x += a.x) >= mod) x -= mod;
        return *this;
    }
    modint& operator-=(const modint& a) {
        if ((x += mod-a.x) >= mod) x -= mod;
        return *this;
    }
    modint& operator*=(const  modint& a) {
        (x *= a.x) %= mod;
        return *this;
    }
    modint operator+(const modint& a) const {
        modint res(*this);
        return res+=a;
    }
    modint operator-(const modint& a) const {
        modint res(*this);
        return res-=a;
    }
    modint operator*(const modint& a) const {
        modint res(*this);
        return res*=a;
    }
    modint pow(long long t) const {
        if (!t) return 1;
        modint a = pow(t>>1);
        a *= a;
        if (t&1) a *= *this;
        return a;
    }
    // for prime mod
    modint inv() const {
        return pow(mod-2);
    }
    modint& operator/=(const modint& a) {
        return (*this) *= a.inv();
    }
    modint operator/(const modint& a) const {
        modint res(*this);
        return res/=a;
    }

    friend std::istream& operator>>(std::istream& is, modint& m) noexcept {
        is >> m.x;
        m.x %= mod;
        if (m.x < 0) m.x += mod;
        return is;
    }

    friend ostream& operator<<(ostream& os, const modint& m){
        os << m.x;
        return os;
    }
};

using mint = modint<MOD998244353>;

void solve(){
    int n, m, k; cin >> n >> m >> k;
    map<vector<int>, mint> dp;
    unweighted_graph G(n);
    for(int i=0; i<m; i++){
        int u, v; cin >> u >> v;
        u--; v--;
        G[u].pb(v);
        G[v].pb(u);
    }

    vector<int> idx(n, 0);
    queue<vector<int>> Q;
    for(int v=0; v<n; v++){
        idx.pb(v);
        idx[v] = 1;
        dp[idx] = 1;
        Q.push(idx);
        idx[v] = 0;
        idx.pop_back();
    }

    set<vector<int>> st;
    while(!Q.empty()){
        vector<int> idx = Q.front();
        Q.pop();
        if(st.find(idx) != st.end()) continue;
        st.insert(idx);

        mint value = dp[idx];
        int v = idx.back();
        for(int to : G[v]) if(idx[to]<k){
            idx.back() = to;
            idx[to]++;
            dp[idx] += value;
            Q.push(idx);
            idx.back() = v;
            idx[to]--;
        }
    }

    mint ans = 0;
    for(int v=0; v<n; v++) idx[v] = k;
    for(int v=0; v<n; v++){
        idx.pb(v);
        ans += dp[idx];
        idx.pop_back();
    }

    cout << ans << '\n';
}

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    
    int T=1;
    //cin >> T;
    while(T--) solve();
}
0