結果
問題 | No.2626 Similar But Different Name |
ユーザー |
|
提出日時 | 2024-04-24 23:32:28 |
言語 | Rust (1.83.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 12,067 bytes |
コンパイル時間 | 13,169 ms |
コンパイル使用メモリ | 378,628 KB |
実行使用メモリ | 47,516 KB |
最終ジャッジ日時 | 2024-11-07 08:51:12 |
合計ジャッジ時間 | 18,917 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 15 TLE * 1 -- * 19 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, chars) => {read_value!($next, String).chars().collect::<Vec<char>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}// Z algorithm. Calculates an array a[i] = |lcp(s, &s[i..])|,// where s is the given slice.// If n = s.length(), the returned array has length n + 1.// E.g. z_algorithm(b"ababa") = vec![5, 0, 3, 0, 1, 0]// Reference: http://snuke.hatenablog.com/entry/2014/12/03/214243// Verified by: ABC284-F (https://atcoder.jp/contests/abc284/submissions/38752029)fn z_algorithm<T: PartialEq>(s: &[T]) -> Vec<usize> {let n = s.len();let mut ret = vec![0; n + 1];ret[0] = n;let mut i = 1; let mut j = 0;while i < n {while i + j < n && s[j] == s[i + j] { j += 1; }ret[i] = j;if j == 0 { i += 1; continue; }let mut k = 1;while i + k < n && k + ret[k] < j {ret[i + k] = ret[k];k += 1;}i += k; j -= k;}ret}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// FFT (in-place, verified as NTT only)// R: Ring + Copy// Verified by: https://judge.yosupo.jp/submission/53831// Adopts the technique used in https://judge.yosupo.jp/submission/3153.mod fft {use std::ops::*;// n should be a power of 2. zeta is a primitive n-th root of unity.// one is unity// Note that the result is bit-reversed.pub fn fft<R>(f: &mut [R], zeta: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let mut m = n;let mut base = zeta;unsafe {while m > 2 {m >>= 1;let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m);*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = w * (u - d);w = w * base;}r += 2 * m;}base = base * base;}if m > 1 {// m = 1let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}}}}pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let zeta = zeta_inv; // inverse FFTlet mut zetapow = Vec::with_capacity(20);{let mut m = 1;let mut cur = zeta;while m < n {zetapow.push(cur);cur = cur * cur;m *= 2;}}let mut m = 1;unsafe {if m < n {zetapow.pop();let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}m = 2;}while m < n {let base = zetapow.pop().unwrap();let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m) * w;*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = u - d;w = w * base;}r += 2 * m;}m *= 2;}}}}// Depends on: fft.rs, MInt.rs// Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328)pub struct FPSOps<M: mod_int::Mod> {gen: mod_int::ModInt<M>,}impl<M: mod_int::Mod> FPSOps<M> {pub fn new(gen: mod_int::ModInt<M>) -> Self {FPSOps { gen: gen }}}impl<M: mod_int::Mod> FPSOps<M> {pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {if a.len() < b.len() {std::mem::swap(&mut a, &mut b);}for i in 0..b.len() {a[i] += b[i];}a}pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {type MInt<M> = mod_int::ModInt<M>;if a.is_empty() || b.is_empty() {return vec![];}let n = a.len() - 1;let m = b.len() - 1;let mut p = 1;while p <= n + m { p *= 2; }let mut f = vec![MInt::new(0); p];let mut g = vec![MInt::new(0); p];for i in 0..n + 1 { f[i] = a[i]; }for i in 0..m + 1 { g[i] = b[i]; }let fac = MInt::new(p as i64).inv();let zeta = self.gen.pow((M::m() - 1) / p as i64);fft::fft(&mut f, zeta, 1.into());fft::fft(&mut g, zeta, 1.into());for i in 0..p { f[i] *= g[i] * fac; }fft::inv_fft(&mut f, zeta.inv(), 1.into());f.truncate(n + m + 1);f}}// https://yukicoder.me/problems/no/2626 (3.5)// まず、大文字小文字を区別せずにマッチするか調べる (26 回の畳み込みでできる)。// その後、大文字小文字を区別したときに異なる箇所の個数を調べる (これは 52 回の畳み込みでできる)。// -> WA + TLE。大文字小文字を区別せずにマッチするかは z_algorithm で計算できる。// Tags: wildcard-pattern-matchingfn main() {input! {n: usize, m: usize, k: usize,s: chars,t: chars,}let mut concat = t.clone();concat.extend_from_slice(&s);for v in &mut concat {*v = v.to_ascii_lowercase();}let z = z_algorithm(&concat);let mut over = vec![0; n - m + 1];let ops = FPSOps::new(MInt::new(3));for c in ('a'..='z').chain('A'..='Z') {let other = if c.is_ascii_lowercase() {c.to_ascii_uppercase()} else {c.to_ascii_lowercase()};let mut st_s = vec![MInt::new(0); n];let mut st_t = vec![MInt::new(0); m];for i in 0..n {if s[i] == c {st_s[i] = 1.into();}}for i in 0..m {if t[i] == other {st_t[m - 1 - i] = 1.into();}}let st = ops.mul(st_s, st_t);for i in 0..n - m + 1 {over[i] += st[i + m - 1].x;}}let mut ans = 0;for i in 0..n - m + 1 {if z[m + i] >= m && (over[i] >= 1 && over[i] <= k as i64) {ans += 1;}}println!("{}", ans);}