結果

問題 No.2626 Similar But Different Name
ユーザー koba-e964koba-e964
提出日時 2024-04-24 23:57:27
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 828 ms / 3,000 ms
コード長 12,598 bytes
コンパイル時間 14,245 ms
コンパイル使用メモリ 378,732 KB
実行使用メモリ 37,692 KB
最終ジャッジ日時 2024-11-07 09:19:03
合計ジャッジ時間 24,726 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Z algorithm. Calculates an array a[i] = |lcp(s, &s[i..])|,
// where s is the given slice.
// If n = s.length(), the returned array has length n + 1.
// E.g. z_algorithm(b"ababa") = vec![5, 0, 3, 0, 1, 0]
// Reference: http://snuke.hatenablog.com/entry/2014/12/03/214243
// Verified by: ABC284-F (https://atcoder.jp/contests/abc284/submissions/38752029)
fn z_algorithm<T: PartialEq>(s: &[T]) -> Vec<usize> {
let n = s.len();
let mut ret = vec![0; n + 1];
ret[0] = n;
let mut i = 1; let mut j = 0;
while i < n {
while i + j < n && s[j] == s[i + j] { j += 1; }
ret[i] = j;
if j == 0 { i += 1; continue; }
let mut k = 1;
while i + k < n && k + ret[k] < j {
ret[i + k] = ret[k];
k += 1;
}
i += k; j -= k;
}
ret
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// FFT (in-place, verified as NTT only)
// R: Ring + Copy
// Verified by: https://judge.yosupo.jp/submission/53831
// Adopts the technique used in https://judge.yosupo.jp/submission/3153.
mod fft {
use std::ops::*;
// n should be a power of 2. zeta is a primitive n-th root of unity.
// one is unity
// Note that the result is bit-reversed.
pub fn fft<R>(f: &mut [R], zeta: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let mut m = n;
let mut base = zeta;
unsafe {
while m > 2 {
m >>= 1;
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m);
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = w * (u - d);
w = w * base;
}
r += 2 * m;
}
base = base * base;
}
if m > 1 {
// m = 1
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
}
}
}
pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let zeta = zeta_inv; // inverse FFT
let mut zetapow = Vec::with_capacity(20);
{
let mut m = 1;
let mut cur = zeta;
while m < n {
zetapow.push(cur);
cur = cur * cur;
m *= 2;
}
}
let mut m = 1;
unsafe {
if m < n {
zetapow.pop();
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
m = 2;
}
while m < n {
let base = zetapow.pop().unwrap();
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m) * w;
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = u - d;
w = w * base;
}
r += 2 * m;
}
m *= 2;
}
}
}
}
// Depends on: fft.rs, MInt.rs
// Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328)
pub struct FPSOps<M: mod_int::Mod> {
gen: mod_int::ModInt<M>,
}
impl<M: mod_int::Mod> FPSOps<M> {
pub fn new(gen: mod_int::ModInt<M>) -> Self {
FPSOps { gen: gen }
}
}
impl<M: mod_int::Mod> FPSOps<M> {
pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {
if a.len() < b.len() {
std::mem::swap(&mut a, &mut b);
}
for i in 0..b.len() {
a[i] += b[i];
}
a
}
pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {
type MInt<M> = mod_int::ModInt<M>;
if a.is_empty() || b.is_empty() {
return vec![];
}
let n = a.len() - 1;
let m = b.len() - 1;
let mut p = 1;
while p <= n + m { p *= 2; }
let mut f = vec![MInt::new(0); p];
let mut g = vec![MInt::new(0); p];
for i in 0..n + 1 { f[i] = a[i]; }
for i in 0..m + 1 { g[i] = b[i]; }
let fac = MInt::new(p as i64).inv();
let zeta = self.gen.pow((M::m() - 1) / p as i64);
fft::fft(&mut f, zeta, 1.into());
fft::fft(&mut g, zeta, 1.into());
for i in 0..p { f[i] *= g[i] * fac; }
fft::inv_fft(&mut f, zeta.inv(), 1.into());
f.truncate(n + m + 1);
f
}
}
// https://yukicoder.me/problems/no/2626 (3.5)
// 調 (26 )
// 調 ( 52 )
// -> WA + TLE z_algorithm
// Tags: wildcard-pattern-matching
fn main() {
input! {
n: usize, m: usize, k: usize,
s: chars,
t: chars,
}
let mut concat = t.clone();
concat.extend_from_slice(&s);
for v in &mut concat {
*v = v.to_ascii_lowercase();
}
let z = z_algorithm(&concat);
let mut over = vec![0; n - m + 1];
let ops = FPSOps::new(MInt::new(3));
let laxmatches = (0..n - m + 1).filter(|&i| z[m + i] >= m).count();
if laxmatches as i64 * m as i64 >= 100_000_000 {
for c in ('a'..='z').chain('A'..='Z') {
let other = if c.is_ascii_lowercase() {
c.to_ascii_uppercase()
} else {
c.to_ascii_lowercase()
};
let mut st_s = vec![MInt::new(0); n];
let mut st_t = vec![MInt::new(0); m];
for i in 0..n {
if s[i] == c {
st_s[i] = 1.into();
}
}
let mut c = 0;
for i in 0..m {
if t[i] == other {
st_t[m - 1 - i] = 1.into();
c += 1;
}
}
if c == 0 { continue; }
let st = ops.mul(st_s, st_t);
for i in 0..n - m + 1 {
over[i] += st[i + m - 1].x;
}
}
} else {
for i in 0..n - m + 1 {
if z[m + i] >= m {
let diff = (0..m).filter(|&j| s[i + j] != t[j]).count();
over[i] = diff as i64;
}
}
}
let mut ans = 0;
for i in 0..n - m + 1 {
if z[m + i] >= m && (over[i] >= 1 && over[i] <= k as i64) {
ans += 1;
}
}
println!("{}", ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0