結果
問題 | No.2626 Similar But Different Name |
ユーザー | koba-e964 |
提出日時 | 2024-04-24 23:57:27 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 828 ms / 3,000 ms |
コード長 | 12,598 bytes |
コンパイル時間 | 14,245 ms |
コンパイル使用メモリ | 378,732 KB |
実行使用メモリ | 37,692 KB |
最終ジャッジ日時 | 2024-11-07 09:19:03 |
合計ジャッジ時間 | 24,726 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 5 ms
5,248 KB |
testcase_11 | AC | 4 ms
5,248 KB |
testcase_12 | AC | 4 ms
5,248 KB |
testcase_13 | AC | 5 ms
5,248 KB |
testcase_14 | AC | 3 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 82 ms
18,232 KB |
testcase_19 | AC | 21 ms
13,672 KB |
testcase_20 | AC | 50 ms
13,640 KB |
testcase_21 | AC | 13 ms
9,832 KB |
testcase_22 | AC | 481 ms
37,496 KB |
testcase_23 | AC | 482 ms
37,692 KB |
testcase_24 | AC | 459 ms
36,648 KB |
testcase_25 | AC | 454 ms
37,036 KB |
testcase_26 | AC | 481 ms
37,616 KB |
testcase_27 | AC | 456 ms
37,692 KB |
testcase_28 | AC | 454 ms
37,224 KB |
testcase_29 | AC | 799 ms
36,576 KB |
testcase_30 | AC | 816 ms
37,084 KB |
testcase_31 | AC | 802 ms
37,444 KB |
testcase_32 | AC | 817 ms
37,564 KB |
testcase_33 | AC | 803 ms
37,656 KB |
testcase_34 | AC | 800 ms
36,584 KB |
testcase_35 | AC | 828 ms
37,432 KB |
testcase_36 | AC | 797 ms
36,672 KB |
testcase_37 | AC | 19 ms
18,108 KB |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // Z algorithm. Calculates an array a[i] = |lcp(s, &s[i..])|, // where s is the given slice. // If n = s.length(), the returned array has length n + 1. // E.g. z_algorithm(b"ababa") = vec![5, 0, 3, 0, 1, 0] // Reference: http://snuke.hatenablog.com/entry/2014/12/03/214243 // Verified by: ABC284-F (https://atcoder.jp/contests/abc284/submissions/38752029) fn z_algorithm<T: PartialEq>(s: &[T]) -> Vec<usize> { let n = s.len(); let mut ret = vec![0; n + 1]; ret[0] = n; let mut i = 1; let mut j = 0; while i < n { while i + j < n && s[j] == s[i + j] { j += 1; } ret[i] = j; if j == 0 { i += 1; continue; } let mut k = 1; while i + k < n && k + ret[k] < j { ret[i + k] = ret[k]; k += 1; } i += k; j -= k; } ret } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Depends on: fft.rs, MInt.rs // Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328) pub struct FPSOps<M: mod_int::Mod> { gen: mod_int::ModInt<M>, } impl<M: mod_int::Mod> FPSOps<M> { pub fn new(gen: mod_int::ModInt<M>) -> Self { FPSOps { gen: gen } } } impl<M: mod_int::Mod> FPSOps<M> { pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> { if a.len() < b.len() { std::mem::swap(&mut a, &mut b); } for i in 0..b.len() { a[i] += b[i]; } a } pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> { type MInt<M> = mod_int::ModInt<M>; if a.is_empty() || b.is_empty() { return vec![]; } let n = a.len() - 1; let m = b.len() - 1; let mut p = 1; while p <= n + m { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; for i in 0..n + 1 { f[i] = a[i]; } for i in 0..m + 1 { g[i] = b[i]; } let fac = MInt::new(p as i64).inv(); let zeta = self.gen.pow((M::m() - 1) / p as i64); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * fac; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); f.truncate(n + m + 1); f } } // https://yukicoder.me/problems/no/2626 (3.5) // まず、大文字小文字を区別せずにマッチするか調べる (26 回の畳み込みでできる)。 // その後、大文字小文字を区別したときに異なる箇所の個数を調べる (これは 52 回の畳み込みでできる)。 // -> WA + TLE。大文字小文字を区別せずにマッチするかは z_algorithm で計算できる。 // Tags: wildcard-pattern-matching fn main() { input! { n: usize, m: usize, k: usize, s: chars, t: chars, } let mut concat = t.clone(); concat.extend_from_slice(&s); for v in &mut concat { *v = v.to_ascii_lowercase(); } let z = z_algorithm(&concat); let mut over = vec![0; n - m + 1]; let ops = FPSOps::new(MInt::new(3)); let laxmatches = (0..n - m + 1).filter(|&i| z[m + i] >= m).count(); if laxmatches as i64 * m as i64 >= 100_000_000 { for c in ('a'..='z').chain('A'..='Z') { let other = if c.is_ascii_lowercase() { c.to_ascii_uppercase() } else { c.to_ascii_lowercase() }; let mut st_s = vec![MInt::new(0); n]; let mut st_t = vec![MInt::new(0); m]; for i in 0..n { if s[i] == c { st_s[i] = 1.into(); } } let mut c = 0; for i in 0..m { if t[i] == other { st_t[m - 1 - i] = 1.into(); c += 1; } } if c == 0 { continue; } let st = ops.mul(st_s, st_t); for i in 0..n - m + 1 { over[i] += st[i + m - 1].x; } } } else { for i in 0..n - m + 1 { if z[m + i] >= m { let diff = (0..m).filter(|&j| s[i + j] != t[j]).count(); over[i] = diff as i64; } } } let mut ans = 0; for i in 0..n - m + 1 { if z[m + i] >= m && (over[i] >= 1 && over[i] <= k as i64) { ans += 1; } } println!("{}", ans); }