結果
| 問題 |
No.2161 Black Market
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2024-04-25 13:20:06 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 591 ms / 7,000 ms |
| コード長 | 10,208 bytes |
| コンパイル時間 | 2,891 ms |
| コンパイル使用メモリ | 228,764 KB |
| 最終ジャッジ日時 | 2025-02-21 08:54:31 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#pragma GCC optimize ( "O3" )
//#pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO ) \
ll ANSWER[LENGTH]; \
ll ANSWER_INV[LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_I ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
} \
POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \
ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV; \
FOREQINV( i , MAX_I - 1 , 0 ){ \
ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO; \
} \
} \
\
// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MAXIMUM; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
\
// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
{ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \
} \
\
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; }
// InitialSegmentSumで負の入力を扱うためにuintではなくintをテンプレート引数にする。
template <typename T , int N>
class BIT
{
private:
T m_fenwick[N + 1];
public:
inline BIT();
inline BIT( const T ( & a )[N] );
inline void Set( const int& i , const T& n );
inline BIT<T,N>& operator+=( const T ( & a )[N] );
void Add( const int& i , const T& n );
T InitialSegmentSum( const int& i_final );
inline T IntervalSum( const int& i_start , const int& i_final );
};
template <typename T , int N> inline BIT<T,N>::BIT() : m_fenwick() {}
template <typename T , int N> inline BIT<T,N>::BIT( const T ( & a )[N] ) : m_fenwick() { operator+=( a ); }
template <typename T , int N> inline void BIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T , int N> inline BIT<T,N>& BIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return *this; }
template <typename T , int N>
void BIT<T,N>::Add( const int& i , const T& n )
{
int j = i + 1;
while( j <= N ){
m_fenwick[j] += n;
j += ( j & -j );
}
return;
}
template <typename T , int N>
T BIT<T,N>::InitialSegmentSum( const int& i_final )
{
T sum = 0;
int j = ( i_final < N ? i_final : N - 1 ) + 1;
while( j > 0 ){
sum += m_fenwick[j];
j -= j & -j;
}
return sum;
}
template <typename T , int N> inline T BIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) { return InitialSegmentSum( i_final ) - InitialSegmentSum( i_start - 1 ); }
#define MULTIPLICATION( F0 , SIGN ) \
{ \
FOR( i , 0 , N_half ){ \
CIN_ASSERT( Ai , 1 , bound ); \
CIN_ASSERT( Bi , 1 , bound ); \
FOREQINV( d0 , min( K , i ) , 0 ){ \
map<pair<int,int>,int>& fd0 = F0[d0]; \
map<pair<int,int>,int>& fd1 = F0[d0+1]; \
FOR_ITR( fd0 , itr , end ){ \
l0 = itr->first.second; \
l1 = l0 + Ai; \
if( l1 <= L ){ \
p0 = itr->first.first; \
p1 = p0 + ( SIGN ) * Bi; \
if( ( SIGN ) * p1 > P ){ \
p1 = ( SIGN ) * P; \
} \
fd1[c1] += fd0[c0]; \
} \
} \
} \
} \
} \
\
int main()
{
UNTIE;
CEXPR( int , bound_N , 34 );
CIN_ASSERT( N , 1 , bound_N );
CIN_ASSERT( K , 1 , N );
CEXPR( int , bound , 1000000000 );
CIN_ASSERT( L , 1 , bound );
CIN_ASSERT( P , 1 , bound );
pair<int,int> c0{};
pair<int,int> c1{};
int& p0 = c0.first;
int& l0 = c0.second;
int& p1 = c1.first;
int& l1 = c1.second;
CEXPR( int , bound_N_half , bound_N / 2);
map<pair<int,int>,int> f[2][bound_N_half + 1] = {};
map<pair<int,int>,int> ( &f0 )[bound_N_half + 1] = f[0];
map<pair<int,int>,int> ( &f1 )[bound_N_half + 1] = f[1];
f0[0][c1] = 1;
f1[0][c1] = 1;
int N_half = N / 2;
MULTIPLICATION( f0 , 1 );
int K0 = min( K , N_half );
N_half = N - N_half;
MULTIPLICATION( f1 , -1 );
int K1 = min( K , N_half );
map<int,int> TheAtl1[bound_N_half + 1] = {};
int num;
FOREQ( d1 , 0 , K1 ){
map<pair<int,int>,int>& f1d1 = f1[d1];
map<int,int>& TheAtl1d1 = TheAtl1[d1];
FOR_ITR( f1d1 , itr1 , end1 ){
TheAtl1d1[- itr1->first.second] = 0;
}
num = 0;
FOR_ITR( TheAtl1d1 , itr1 , end1 ){
itr1->second = num++;
}
}
ll answer = 0;
map<int,int>::iterator itr_TheAtl1d1 , end_TheAtl1d1;
map<pair<int,int>,int>::iterator itr1 , end1;
CEXPR( int , length , 1 << bound_N_half );
FOREQINV( d0 , K0 , 0 ){
map<pair<int,int>,int>& f0d0 = f0[d0];
FOREQINV( d1 , min( K1 , K - d0 ) , 0 ){
map<pair<int,int>,int>& f1d1 = f1[d1];
map<int,int>& TheAtl1d1 = TheAtl1[d1];
BIT<int,length> S{};
itr1 = f1d1.begin();
end1 = f1d1.end();
end_TheAtl1d1 = TheAtl1d1.end();
c1 = itr1->first;
FOR_ITR( f0d0 , itr0 , end0 ){
c0 = itr0->first;
while( itr1 != end1 && p0 - p1 >= P ){
S.Add( TheAtl1d1[- c1.second] , itr1->second );
itr1++;
c1 = itr1->first;
}
itr_TheAtl1d1 = TheAtl1d1.lower_bound( l0 - L );
if( itr_TheAtl1d1 != end_TheAtl1d1 ){
num = itr_TheAtl1d1->second;
answer += itr0->second * S.IntervalSum( num , length - 1 );
}
}
}
}
RETURN( answer );
}