結果
| 問題 |
No.738 平らな農地
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-04-25 14:25:15 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 134 ms / 2,000 ms |
| コード長 | 11,479 bytes |
| コンパイル時間 | 15,873 ms |
| コンパイル使用メモリ | 232,932 KB |
| 実行使用メモリ | 9,388 KB |
| 最終ジャッジ日時 | 2024-11-08 01:24:06 |
| 合計ジャッジ時間 | 21,011 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 87 |
ソースコード
// 动态中位数,用两个可删除堆(对顶堆)实现
// api:
// 1. Insert(x T)
// 2. Discard(x T) bool
// 3. Median() (low, high T)
// 4. DistToMedian() T
// 5. Size() int32
package main
import (
"bufio"
"fmt"
"math/bits"
"math/rand"
"os"
"sort"
)
func main() {
// test()
yuki738()
}
// 9 2
// 1 4 1 4 2 1 3 5 6
const INF int = 1e18
// No.738 平らな農地
// https://yukicoder.me/problems/no/738
// !滑动窗口所有数到中位数的距离和
func yuki738() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, k int32
fmt.Fscan(in, &n, &k)
nums := make([]int, n)
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &nums[i])
}
M := NewDynamicMedian()
res := INF
for i := int32(0); i < n; i++ {
M.Insert(nums[i])
if i >= k {
M.Discard(nums[i-k])
}
if i >= k-1 {
res = min(res, M.DistToMedian())
}
// fmt.Println(M.Median())
// fmt.Println(M.DistToMedian(), 987, M.Size())
}
fmt.Fprintln(out, res)
}
// 1e5 -> 200, 2e5 -> 400
const _LOAD int = 50
type S = int
type DynamicMedian struct {
size int32
lower *_sl
upper *_sl
lowerSum S
upperSum S
}
func NewDynamicMedian() *DynamicMedian {
return &DynamicMedian{
lower: NewSortedList(func(a, b S) bool { return a < b }),
upper: NewSortedList(func(a, b S) bool { return a > b }),
}
}
func (d *DynamicMedian) Insert(value S) {
if d.size&1 == 0 {
d.upper.Add(value)
d.upperSum += value
} else {
d.lower.Add(value)
d.lowerSum += value
}
d.size++
d.balance()
}
func (d *DynamicMedian) Discard(value S) bool {
if d.lower.Discard(value) {
d.lowerSum -= value
d.size--
d.balance()
return true
} else if d.upper.Discard(value) {
d.upperSum -= value
d.size--
d.balance()
return true
} else {
return false
}
}
// 返回中位数.如果元素个数为偶数,返回两个中位数.
func (d *DynamicMedian) Median() (low, high S) {
if d.size == 0 {
return
}
if d.size&1 == 0 {
low = d.lower.Max()
high = d.upper.Max()
} else {
low = d.upper.Max()
high = low
}
return
}
func (d *DynamicMedian) DistToMedian() S {
if d.size == 0 {
return 0
}
low, _ := d.Median()
sum1 := low*S(d.lower.Len()) - d.lowerSum
sum2 := d.upperSum - low*S(d.upper.Len())
return sum1 + sum2
}
func (d *DynamicMedian) Size() int32 { return d.size }
func (d *DynamicMedian) balance() {
// 偶数个数时,|lower heap| == |upper heap|
// 奇数个数时,|lower heap| + 1 == |upper heap|
for d.lower.Len()+1 < d.upper.Len() {
upperMin := d.upper._popLast()
d.lower._appendLast(upperMin)
d.lowerSum += upperMin
d.upperSum -= upperMin
}
for d.lower.Len() > d.upper.Len() {
lowerMin := d.lower._popLast()
d.upper._appendLast(lowerMin)
d.upperSum += lowerMin
d.lowerSum -= lowerMin
}
// if d.size&1 == 0 {
// if d.lower.size != d.upper.size {
// panic("size error")
// }
// } else {
// if d.lower.size+1 != d.upper.size {
// panic("size error")
// }
// }
if d.lower.Len() == 0 || d.upper.Len() == 0 {
return
}
if d.lower.Max() > d.upper.Max() {
upperMin := d.upper._popLast()
d.lower.Add(upperMin)
d.lowerSum += upperMin
d.upperSum -= upperMin
lowerMax := d.lower._popLast()
d.upper.Add(lowerMax)
d.upperSum += lowerMax
d.lowerSum -= lowerMax
}
}
// 使用分块+树状数组维护的有序序列.
type _sl struct {
less func(a, b S) bool
size int
blocks [][]S
mins []S
tree []int
shouldRebuildTree bool
}
func NewSortedList(less func(a, b S) bool, elements ...S) *_sl {
elements = append(elements[:0:0], elements...)
res := &_sl{less: less}
sort.Slice(elements, func(i, j int) bool { return less(elements[i], elements[j]) })
n := len(elements)
blocks := [][]S{}
for start := 0; start < n; start += _LOAD {
end := min(start+_LOAD, n)
blocks = append(blocks, elements[start:end:end]) // !各个块互不影响, max参数也需要指定为end
}
mins := make([]S, len(blocks))
for i, cur := range blocks {
mins[i] = cur[0]
}
res.size = n
res.blocks = blocks
res.mins = mins
res.shouldRebuildTree = true
return res
}
func (sl *_sl) Add(value S) *_sl {
sl.size++
if len(sl.blocks) == 0 {
sl.blocks = append(sl.blocks, []S{value})
sl.mins = append(sl.mins, value)
sl.shouldRebuildTree = true
return sl
}
pos, index := sl._locRight(value)
sl._updateTree(pos, 1)
sl.blocks[pos] = append(sl.blocks[pos][:index], append([]S{value}, sl.blocks[pos][index:]...)...)
sl.mins[pos] = sl.blocks[pos][0]
// n -> load + (n - load)
if n := len(sl.blocks[pos]); _LOAD+_LOAD < n {
sl.blocks = append(sl.blocks[:pos+1], append([][]S{sl.blocks[pos][_LOAD:]}, sl.blocks[pos+1:]...)...)
sl.mins = append(sl.mins[:pos+1], append([]S{sl.blocks[pos][_LOAD]}, sl.mins[pos+1:]...)...)
sl.blocks[pos] = sl.blocks[pos][:_LOAD:_LOAD] // !注意max的设置(为了让左右互不影响)
sl.shouldRebuildTree = true
}
return sl
}
func (sl *_sl) _appendLast(value S) *_sl {
sl.size++
if len(sl.blocks) == 0 {
sl.blocks = append(sl.blocks, []S{value})
sl.mins = append(sl.mins, value)
sl.shouldRebuildTree = true
return sl
}
pos := len(sl.blocks) - 1
sl._updateTree(pos, 1)
sl.blocks[pos] = append(sl.blocks[pos], value)
// n -> load + (n - load)
if n := len(sl.blocks[pos]); _LOAD+_LOAD < n {
sl.blocks = append(sl.blocks[:pos+1], append([][]S{sl.blocks[pos][_LOAD:]}, sl.blocks[pos+1:]...)...)
sl.mins = append(sl.mins[:pos+1], append([]S{sl.blocks[pos][_LOAD]}, sl.mins[pos+1:]...)...)
sl.blocks[pos] = sl.blocks[pos][:_LOAD:_LOAD] // !注意max的设置(为了让左右互不影响)
sl.shouldRebuildTree = true
}
return sl
}
func (sl *_sl) _popLast() S {
sl.size--
pos := len(sl.blocks) - 1
res := sl.blocks[pos][len(sl.blocks[pos])-1]
sl._updateTree(pos, -1)
sl.blocks[pos] = sl.blocks[pos][:len(sl.blocks[pos])-1]
if len(sl.blocks[pos]) == 0 {
// !delete block
sl.blocks = sl.blocks[:pos]
sl.mins = sl.mins[:pos]
sl.shouldRebuildTree = true
}
return res
}
func (sl *_sl) Discard(value S) bool {
if len(sl.blocks) == 0 {
return false
}
pos, index := sl._locRight(value)
if index > 0 && sl.blocks[pos][index-1] == value {
sl._delete(pos, index-1)
return true
}
return false
}
func (sl *_sl) Min() S {
if sl.size == 0 {
panic("Min() called on empty SortedList")
}
return sl.mins[0]
}
func (sl *_sl) Max() S {
if sl.size == 0 {
panic("Max() called on empty SortedList")
}
lastBlock := sl.blocks[len(sl.blocks)-1]
return lastBlock[len(lastBlock)-1]
}
func (sl *_sl) Len() int {
return sl.size
}
func (sl *_sl) _delete(pos, index int) {
// !delete element
sl.size--
sl._updateTree(pos, -1)
sl.blocks[pos] = append(sl.blocks[pos][:index], sl.blocks[pos][index+1:]...)
if len(sl.blocks[pos]) > 0 {
sl.mins[pos] = sl.blocks[pos][0]
return
}
// !delete block
sl.blocks = append(sl.blocks[:pos], sl.blocks[pos+1:]...)
sl.mins = append(sl.mins[:pos], sl.mins[pos+1:]...)
sl.shouldRebuildTree = true
}
func (sl *_sl) _locLeft(value S) (pos, index int) {
if sl.size == 0 {
return
}
// find pos
left := -1
right := len(sl.blocks) - 1
for left+1 < right {
mid := (left + right) >> 1
if !sl.less(sl.mins[mid], value) {
right = mid
} else {
left = mid
}
}
if right > 0 {
block := sl.blocks[right-1]
if !sl.less(block[len(block)-1], value) {
right--
}
}
pos = right
// find index
cur := sl.blocks[pos]
left = -1
right = len(cur)
for left+1 < right {
mid := (left + right) >> 1
if !sl.less(cur[mid], value) {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *_sl) _locRight(value S) (pos, index int) {
if sl.size == 0 {
return
}
// find pos
left := 0
right := len(sl.blocks)
for left+1 < right {
mid := (left + right) >> 1
if sl.less(value, sl.mins[mid]) {
right = mid
} else {
left = mid
}
}
pos = left
// find index
cur := sl.blocks[pos]
left = -1
right = len(cur)
for left+1 < right {
mid := (left + right) >> 1
if sl.less(value, cur[mid]) {
right = mid
} else {
left = mid
}
}
index = right
return
}
func (sl *_sl) _locBlock(value S) int {
left, right := -1, len(sl.blocks)-1
for left+1 < right {
mid := (left + right) >> 1
if !sl.less(sl.mins[mid], value) {
right = mid
} else {
left = mid
}
}
if right > 0 {
block := sl.blocks[right-1]
if !sl.less(block[len(block)-1], value) {
right--
}
}
return right
}
func (sl *_sl) _buildTree() {
sl.tree = make([]int, len(sl.blocks))
for i := 0; i < len(sl.blocks); i++ {
sl.tree[i] = len(sl.blocks[i])
}
tree := sl.tree
for i := 0; i < len(tree); i++ {
j := i | (i + 1)
if j < len(tree) {
tree[j] += tree[i]
}
}
sl.shouldRebuildTree = false
}
func (sl *_sl) _updateTree(index, delta int) {
if sl.shouldRebuildTree {
return
}
tree := sl.tree
for i := index; i < len(tree); i |= i + 1 {
tree[i] += delta
}
}
func (sl *_sl) _queryTree(end int) int {
if sl.shouldRebuildTree {
sl._buildTree()
}
tree := sl.tree
sum := 0
for end > 0 {
sum += tree[end-1]
end &= end - 1
}
return sum
}
func (sl *_sl) _findKth(k int) (pos, index int) {
if k < len(sl.blocks[0]) {
return 0, k
}
last := len(sl.blocks) - 1
lastLen := len(sl.blocks[last])
if k >= sl.size-lastLen {
return last, k + lastLen - sl.size
}
if sl.shouldRebuildTree {
sl._buildTree()
}
tree := sl.tree
pos = -1
bitLength := bits.Len32(uint32(len(tree)))
for d := bitLength - 1; d >= 0; d-- {
next := pos + (1 << d)
if next < len(tree) && k >= tree[next] {
pos = next
k -= tree[pos]
}
}
return pos + 1, k
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func abs(a int) int {
if a < 0 {
return -a
}
return a
}
func test() {
for i := 0; i < 1000; i++ {
M := NewDynamicMedian()
sortedNums := make([]int, 0)
add := func(x int) {
sortedNums = append(sortedNums, x)
sort.Ints(sortedNums)
}
discard := func(x int) {
for i, v := range sortedNums {
if v == x {
sortedNums = append(sortedNums[:i], sortedNums[i+1:]...)
break
}
}
}
median := func() (low, high int) {
if len(sortedNums) == 0 {
return
}
n := len(sortedNums)
if n&1 == 0 {
low = sortedNums[n/2-1]
high = sortedNums[n/2]
} else {
low = sortedNums[n/2]
high = low
}
return
}
distToMedian := func() int {
if len(sortedNums) == 0 {
return 0
}
low, _ := median()
res := 0
for _, v := range sortedNums {
res += abs(v - low)
}
return res
}
size := func() int {
return len(sortedNums)
}
for j := 0; j < 1000; j++ {
x := rand.Intn(10)
// add
M.Insert(x)
add(x)
// discard
y := rand.Intn(10)
M.Discard(y)
discard(y)
// median
low, high := M.Median()
low2, high2 := median()
if low != low2 || high != high2 {
fmt.Println("error")
fmt.Println(low, high, low2, high2)
fmt.Println(sortedNums)
panic("error")
}
// distToMedian
res := M.DistToMedian()
res2 := distToMedian()
if res != res2 {
fmt.Println("error")
fmt.Println(res, res2)
fmt.Println(sortedNums)
panic("error")
}
// size
sz := M.Size()
sz2 := size()
if sz != int32(sz2) {
fmt.Println("error")
fmt.Println(sz, sz2)
fmt.Println(sortedNums)
panic("error")
}
}
}
fmt.Println("pass")
}