結果
問題 | No.2613 Sum of Combination |
ユーザー | koba-e964 |
提出日時 | 2024-04-25 20:17:55 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 371 ms / 4,500 ms |
コード長 | 11,074 bytes |
コンパイル時間 | 1,017 ms |
コンパイル使用メモリ | 174,528 KB |
実行使用メモリ | 18,056 KB |
最終ジャッジ日時 | 2024-04-25 20:18:08 |
合計ジャッジ時間 | 11,464 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 0 ms
6,940 KB |
testcase_02 | AC | 6 ms
6,940 KB |
testcase_03 | AC | 0 ms
6,940 KB |
testcase_04 | AC | 0 ms
6,940 KB |
testcase_05 | AC | 0 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 0 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,944 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 10 ms
6,940 KB |
testcase_14 | AC | 10 ms
6,940 KB |
testcase_15 | AC | 5 ms
6,944 KB |
testcase_16 | AC | 10 ms
6,940 KB |
testcase_17 | AC | 10 ms
6,940 KB |
testcase_18 | AC | 10 ms
6,944 KB |
testcase_19 | AC | 11 ms
6,940 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 20 ms
6,940 KB |
testcase_23 | AC | 333 ms
16,676 KB |
testcase_24 | AC | 330 ms
16,664 KB |
testcase_25 | AC | 333 ms
15,348 KB |
testcase_26 | AC | 325 ms
17,732 KB |
testcase_27 | AC | 156 ms
10,112 KB |
testcase_28 | AC | 332 ms
17,732 KB |
testcase_29 | AC | 330 ms
17,220 KB |
testcase_30 | AC | 333 ms
17,772 KB |
testcase_31 | AC | 371 ms
16,956 KB |
testcase_32 | AC | 338 ms
17,072 KB |
testcase_33 | AC | 324 ms
17,900 KB |
testcase_34 | AC | 350 ms
17,900 KB |
testcase_35 | AC | 332 ms
17,836 KB |
testcase_36 | AC | 339 ms
17,916 KB |
testcase_37 | AC | 352 ms
17,748 KB |
testcase_38 | AC | 336 ms
17,580 KB |
testcase_39 | AC | 344 ms
17,644 KB |
testcase_40 | AC | 370 ms
17,648 KB |
testcase_41 | AC | 323 ms
17,744 KB |
testcase_42 | AC | 333 ms
17,768 KB |
testcase_43 | AC | 342 ms
17,892 KB |
testcase_44 | AC | 323 ms
17,876 KB |
testcase_45 | AC | 1 ms
6,940 KB |
testcase_46 | AC | 1 ms
6,944 KB |
testcase_47 | AC | 1 ms
6,944 KB |
testcase_48 | AC | 1 ms
6,940 KB |
testcase_49 | AC | 1 ms
6,940 KB |
testcase_50 | AC | 362 ms
17,888 KB |
testcase_51 | AC | 323 ms
18,056 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Depends on: fft.rs, MInt.rs // Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328) pub struct FPSOps<M: mod_int::Mod> { gen: mod_int::ModInt<M>, } impl<M: mod_int::Mod> FPSOps<M> { pub fn new(gen: mod_int::ModInt<M>) -> Self { FPSOps { gen: gen } } } impl<M: mod_int::Mod> FPSOps<M> { pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> { if a.len() < b.len() { std::mem::swap(&mut a, &mut b); } for i in 0..b.len() { a[i] += b[i]; } a } pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> { type MInt<M> = mod_int::ModInt<M>; if a.is_empty() || b.is_empty() { return vec![]; } let n = a.len() - 1; let m = b.len() - 1; let mut p = 1; while p <= n + m { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; for i in 0..n + 1 { f[i] = a[i]; } for i in 0..m + 1 { g[i] = b[i]; } let fac = MInt::new(p as i64).inv(); let zeta = self.gen.pow((M::m() - 1) / p as i64); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * fac; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); f.truncate(n + m + 1); f } } // O(40p) fn find_generator(p: usize) -> usize { fn is_gen(g: usize, p: usize) -> bool { let mut cur = g; for _ in 1..p - 1 { if cur == 1 { return false; } cur = cur * g % p; } true } if p == 2 { return 1; } let mut g = 2; loop { if is_gen(g, p) { return g; } g += 1; } } // Ref: https://techtipshoge.blogspot.com/2012/04/facebook-hacker-cup-2011-round2-scott.html // Tags: discrete-logarithm, lucas-theorem, generator-of-finite-fields fn main() { let mut n: i64 = get(); let p: usize = get(); let pp = p as i64; let mut dig = vec![]; while n > 0 { dig.push((n % pp) as usize); n /= pp; } let g = find_generator(p); let mut log = vec![0; p]; let mut exp = vec![0; p - 1]; let mut cur = 1; for i in 0..p - 1 { log[cur] = i; exp[i] = cur; cur = cur * g % p; } let mut logfac = vec![0; p]; for i in 1..p { logfac[i] = (logfac[i - 1] + log[i]) % (p - 1); } let mut cur = vec![MInt::new(0); p - 1]; cur[0] += 1; let ops = FPSOps::new(MInt::new(3)); for d in dig { let mut me = vec![MInt::new(0); p - 1]; for i in 0..d + 1 { let idx = (2 * p - 2 + logfac[d] - logfac[i] - logfac[d - i]) % (p - 1); me[idx] += 1; } let tmp = ops.mul(cur, me); cur = vec![MInt::new(0); p - 1]; cur.copy_from_slice(&tmp[..p - 1]); for i in p - 1..2 * p - 3 { cur[i - (p - 1)] += tmp[i]; } } let mut tot = MInt::new(0); for i in 0..p - 1 { tot += cur[i] * exp[i] as i64; } println!("{}", tot); }