結果

問題 No.2764 Warp Drive Spacecraft
ユーザー 👑 binap
提出日時 2024-04-28 23:35:11
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,674 bytes
コンパイル時間 4,334 ms
コンパイル使用メモリ 275,104 KB
最終ジャッジ日時 2025-02-21 09:22:48
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 12 MLE * 1 -- * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return
    os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");
    return os;}
template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}
const long long INF = 2002002002002002002;
using S = long long;
S _INF(INF);
S _ZERO(0LL);
using F = long long;
S apply(F f, S x){
return f + x;
}
template<typename S, typename F>
struct Dijkstra{
struct Edge{
int from, to;
F cost;
Edge(int from, int to, F cost) : from(from), to(to), cost(cost) {};
};
int n, m;
vector<bool> initialized;
vector<Edge> E;
vector<vector<int>> G;
map<int, vector<S>> dist;
map<int, vector<int>> idx;
Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
void add_edge(int from, int to, F cost){
Edge e(from, to, cost);
E.push_back(e);
G[from].emplace_back(m);
m++;
}
void calc(int s){
initialized[s] = true;
dist[s] = vector<S>(n, _INF);
idx[s] = vector<int>(n, -1);
priority_queue<tuple<S, int, int>, vector<tuple<S, int, int>>, greater<tuple<S, int, int>>> pq;
pq.emplace(_ZERO, s, -1);
while(pq.size()){
auto [dist_from, from, index] = pq.top(); pq.pop();
if(dist[s][from] <= dist_from) continue;
dist[s][from] = dist_from;
idx[s][from] = index;
for(int index : G[from]){
int to = E[index].to;
S dist_to = apply(E[index].cost, dist_from);
if(dist[s][to] <= dist_to) continue;
pq.emplace(dist_to, to, index);
}
}
}
S get_dist(int s, int t){
if(!initialized[s]) calc(s);
return dist[s][t];
}
};
int main(){
int n, m;
cin >> n >> m;
assert(1 <= n && n <= 200000);
assert(0 <= m && m <= 200000);
vector<long long> w(n);
for(int i = 0; i < n; i++) cin >> w[i];
for(int i = 0; i < n; i++) assert(1 <= w[i] && w[i] <= 1000000000);
set<pair<int, int>> set_for_assert;
Dijkstra<long long, long long> graph(2 * n);
for(int i = 0; i < m; i++){
int u, v;
long long t;
cin >> u >> v >> t;
if(cin.fail()) assert(false);
assert(1 <= u && u < v && v <= n);
assert(1 <= t && t <= 1000000000000);
if(set_for_assert.find(make_pair(u, v)) != set_for_assert.end()) assert(false);
set_for_assert.insert(make_pair(u, v));
u--; v--;
graph.add_edge(u, v, t);
graph.add_edge(v, u, t);
graph.add_edge(n + u, n + v, t);
graph.add_edge(n + v, n + u, t);
}
for(int i = 0; i < n; i++) for(int j = 0; j < n; j++){
if(i == j) continue;
graph.add_edge(i, n + j, w[i] * w[j]);
}
long long ans1 = graph.get_dist(0, n - 1);
long long ans2 = graph.get_dist(0, 2 * n - 1);
cout << min(ans1, ans2) << "\n";
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0